# ANÁLISIS DE PERTURBACIONES DEL SISTEMA DE HAAR

Autor:
WILFREDO ARIEL RAMOS
Director:
Dr. Hugo A. Aimar
Codirectora:
Dra Gladis G. Pradolini

Santa Fe - Argentina 2014

#### LEMA

Lema de Cotlar. Sea  $\{T_i\}$  una sucesión de operadores lineales y continuos sobre un espacio de Hilbert H. Supongamos que existe  $s:\mathbb{Z}\to(0,\infty)$  tal que  $\sum_{k\in\mathbb{Z}} s(k)^{\frac{1}{2}} = A < \infty$ , y

$$||T_i^*T_j|| \le s(i-j)$$
  $y$   $||T_iT_j^*|| \le s(i-j).$ 

### **Entonces**

$$\left\| \sum_{i=-N}^{N} T_i \right\| \le A,$$

para todo  $N \in \mathbb{N}$ .

El lema de Schur es una extensión de la desigualdad de Young en contextos no invariantes por traslaciones.

#### LEMA

(Lema de Schur) Sean  $(X, \mu)$  e  $(Y, \nu)$  dos espacios de medida  $\sigma$ -finita. Sea  $K: X \times Y \to \mathbb{R}$ , tal que

- A)  $\int_X |K(x,y)| d\mu(x) < M \text{ c.t.p } y \in Y$ ,
- B)  $\int_Y |K(x,y)| d\nu(y) < M \text{ c.t.p } x \in X$ ,

para alguna constante M>0. Entonces el operador  $\Upsilon$ , 1 definido por

$$\Upsilon g(x) = \int_{Y} K(x, y)g(y)d\nu(y)$$

está acotado de  $L^p(Y, \nu)$  en  $L^p(X, \mu)$  y además  $\|\Upsilon\| \leq M$ .

### DEFINICIÓN

Si  $1 , <math>A_p$ :

$$\left(\int_{Q} w\right) \left(\int_{Q} w^{-\frac{1}{p-1}}\right)^{p-1} \leq C \left|Q\right|^{p} \ \forall Q \subset \mathbb{R}^{n}$$

 $A_1$ :

$$\frac{1}{|Q|} \int_{Q} w(y) \, dy \le c \, \text{inf.ess } w(y) \, \forall Q \subset \mathbb{R}^{n}.$$

$$A_{\infty} := \bigcup_{p \geq 1} A_p$$
.

### DEFINICIÓN

### Marco

Una sucesión  $\{f_k, k \in \mathbb{Z}\}$  de elementos de un espacio de Hilbert H es un marco para H si existen constantes A, B > 0 tales que

$$A \|f\|_{H}^{2} \leq \sum_{k} \left| \langle f, f_{k} \rangle \right|^{2} \leq B \|f\|_{H}^{2} \qquad para \ toda \ f \in H. \tag{1}$$

#### **DEFINICIÓN**

### Sucesión de Bessel

Si cumple la desigualdad de la derecha en la definición de Marco.

### DEFINICIÓN

### Base de Riesz

Si es un marco exacto.

### **TEOREMA**

Teorema de estabilidad de Favier-Zalik de bases de Riesz.

### **TEOREMA**

Teorema de estabilidad de Favier-Zalik de bases de Riesz.

• H un espacio de Hilbert

### **TEOREMA**

Teorema de estabilidad de Favier-Zalik de bases de Riesz.

- H un espacio de Hilbert,
- $\{f_n\}$  Base de Riesz en H con cotas A y B,

#### **TEOREMA**

Teorema de estabilidad de Favier-Zalik de bases de Riesz.

- H un espacio de Hilbert,
- $\{f_n\}$  Base de Riesz en H con cotas A y B,
- $\{g_n\}$  sucesión (perturbadas) en H tal que  $\{f_n g_n\}$  (perturbaciones) es una sucesión de Bessel en H con cota M < A.

#### **TEOREMA**

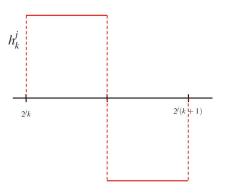
Teorema de estabilidad de Favier-Zalik de bases de Riesz.

- H un espacio de Hilbert,
- $\{f_n\}$  Base de Riesz en H con cotas A y B,
- $\{g_n\}$  sucesión (perturbadas) en H tal que  $\{f_n g_n\}$  (perturbaciones) es una sucesión de Bessel en H con cota M < A.

entonces  $\{g_n\}$  es una base de Riesz en H con cotas  $\left[1-\left(\frac{M}{A}\right)^{\frac{1}{2}}\right]^2A$  y  $\left[1+\left(\frac{M}{B}\right)^{\frac{1}{2}}\right]^2B$ .

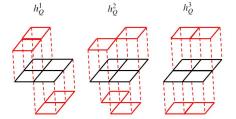
### Sistemas de Wavelets de Haar en $(\mathbb{R}^n, dx)$ :

$$\mathcal{H}(\mathbb{R}) := \{ h_k^j := 2^{j/2} h(2^j x - k) \}$$



### Sistemas de Wavelets de Haar en $(\mathbb{R}^n, dx)$ :

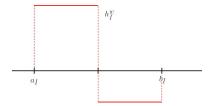
$$\mathcal{H}(\mathbb{R}^n) := \{h_Q^m, \ Q \in \mathcal{D}(\mathbb{R}^n), \ m = 1, ..., 2^n - 1\}$$



### Sistemas de Wavelets de Haar en $(\mathbb{R}^n, wdx)$ :

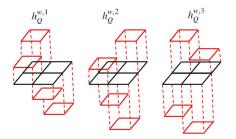
$$\mathcal{H}^{\scriptscriptstyle{W}}(\mathbb{R}):=\{h_I^{\scriptscriptstyle{W}},\ I\in\mathcal{D}(\mathbb{R})\}$$

$$h_I^w(x) = \frac{1}{\sqrt{w(I)}} \left\{ \sqrt{\frac{w(I_r)}{w(I_l)}} \chi_{I_l}(x) - \sqrt{\frac{w(I_l)}{w(I_r)}} \chi_{I_r}(x) \right\}. \tag{1}$$



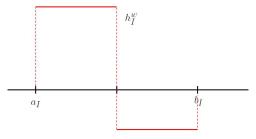
### Sistemas de Wavelets de Haar en $(\mathbb{R}^n, wdx)$ :

$$\mathcal{H}^{w}(\mathbb{R}^{n}) := \{h_{Q}^{w,m}, \ Q \in \mathcal{D}(\mathbb{R}^{n}), \ m = 1, ..., 2^{n} - 1\}$$



Si  $w \in A_{\infty}$ 

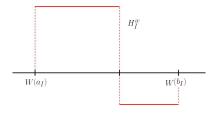
$$h_I^w(x) = \frac{1}{\sqrt{w(I)}} \left\{ \sqrt{\frac{w(I_r)}{w(I_l)}} \chi_{I_l}(x) - \sqrt{\frac{w(I_l)}{w(I_r)}} \chi_{I_r}(x) \right\}. \tag{1}$$



 $\mathcal{H}^w:=\{h_I^w,\ I\in\mathcal{D}\}$  es una base ortonormal de  $L^2(\mathbb{R},wdx)$ 

Si 
$$W(x) = \int_0^x w(y) dy$$
 y  $H_I^w = h_I^w \circ W^{-1}$ .

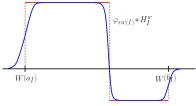
$$H_I^w(x) = \frac{1}{\sqrt{|I'|}} \left\{ \sqrt{\frac{|I'_r|}{|I'_l|}} \chi_{I'_l}(x) - \sqrt{\frac{|I'_l|}{|I'_r|}} \chi_{I'_r}(x) \right\}$$
(1)





Dada  $\varphi \in C^{\infty}$ 

$$H_I^{w,\epsilon}(x) = \left(\varphi_{\epsilon w(I)} * H_I^w\right)(x) \tag{1}$$



probamos que  $\mathcal{H}^{\epsilon}=\{H_{I}^{w,\epsilon},\ I\in\mathcal{D}\}$  es una Base de Riesz de  $L^{2}(\mathbb{R})$ .

- $\bullet \ b_I^{\epsilon} = H_I^w H_I^{w,\epsilon},$
- $Tf = \sum_{j \in \mathbb{Z}} \sum_{J \in \mathcal{D}^j} \langle f, b_J^{\epsilon} \rangle H_J^w = \sum_{j \in \mathbb{Z}} T_j f$ ,
- $\bullet \|T_i^*T_j\|, \|T_iT_j^*\|$

$$\left\|T_iT_j^*f
ight\|^2 = \sum_{I\in\mathcal{D}^i} \left(\sum_{J\in\mathcal{D}^j} \langle f, H_J^w
angle \langle b_I^\epsilon, b_J^\epsilon
angle
ight)^2$$

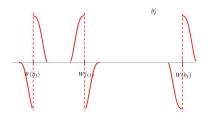
$$\left\|T_{i}T_{j}^{*}f\right\|^{2} = \sum_{I \in \mathcal{D}^{i}} \left(\sum_{J \in \mathcal{D}^{j}} \langle f, H_{J}^{w} \rangle \langle b_{I}^{\epsilon}, b_{J}^{\epsilon} \rangle\right)^{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

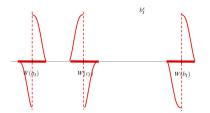
$$\left\|T_{i}T_{j}^{*}f\right\|^{2} = \sum_{I \in \mathcal{D}^{i}} \left(\sum_{J \in \mathcal{D}^{j}} \langle f, H_{J}^{w} \rangle \langle b_{I}^{\epsilon}, b_{J}^{\epsilon} \rangle\right)^{2}$$

$$\xrightarrow{a_{I}} \xrightarrow{c_{I}} \xrightarrow{b_{I}} \xrightarrow{I}$$

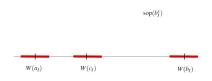
$$\left\|T_iT_j^*f
ight\|^2 = \sum_{I \in \mathcal{D}^i} \left(\sum_{J \in \mathcal{D}^j} \langle f, H_J^w 
angle \langle b_I^\epsilon, b_J^\epsilon 
angle
ight)^2$$



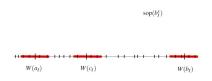
$$\left\|T_iT_j^*f
ight\|^2 = \sum_{I \in \mathcal{D}^i} \left(\sum_{J \in \mathcal{D}^j} \langle f, H_J^w 
angle \langle b_I^\epsilon, b_J^\epsilon 
angle
ight)^2$$



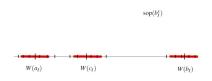
$$\left\|T_iT_j^*f
ight\|^2 = \sum_{I \in \mathcal{D}^i} \left(\sum_{J \in \mathcal{D}^j} \langle f, H_J^w 
angle \langle b_I^\epsilon, b_J^\epsilon 
angle
ight)^2$$

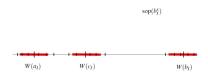


$$\left\|T_{i}T_{j}^{*}f\right\|^{2} = \sum_{I \in \mathcal{D}^{i}} \left(\sum_{J \in \mathcal{D}^{i}} \langle f, H_{J}^{w} \rangle \langle b_{I}^{\epsilon}, b_{J}^{\epsilon} \rangle\right)^{2}$$



$$\left\|T_{i}T_{j}^{*}f\right\|^{2} = \sum_{I \in \mathcal{D}^{i}} \left(\sum_{J \in \mathcal{D}^{i}} \langle f, H_{J}^{w} \rangle \langle b_{I}^{\epsilon}, b_{J}^{\epsilon} \rangle\right)^{2}$$

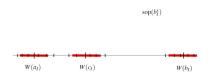




$$\int_{W^{\epsilon}(J)} b_{J}^{\epsilon}(x) b_{I}^{\epsilon}(x) dx = \int_{W^{\epsilon}(J)} b_{J}^{\epsilon}(x) \left( b_{I}^{\epsilon}(x) - b_{I}^{\epsilon}(y) \right) dx$$

$$\begin{split} \sum_{J \in \mathcal{B}} \left| \langle b_I^{\epsilon}, b_J^{\epsilon} \rangle \right|^2 &= \sum_{J \in \mathcal{B}} \left| \sum_{m=1}^3 \int_{S_J^{\epsilon,m}} b_J^{\epsilon}(x) \left( b_I^{\epsilon}(x) - b_I^{\epsilon}(x_J^m) \right) dx \right|^2 \\ &\leq \sum_{J \in \mathcal{B}} \frac{C}{\epsilon^2 w(I)^3} \left( \sum_{m=1}^3 \int_{S_J^{\epsilon,m}} \left| b_J^{\epsilon}(x) \right| \left| x - x_J^m \right| dx \right)^2 \\ &\leq C \sum_{J \in \mathcal{B}} \frac{1}{\epsilon^2 w(I)^3} \left| S_J^{\epsilon} \right|^2 \frac{1}{w(J)} \epsilon^2 w(J)^2 \end{split}$$

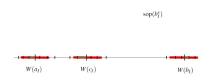
#### Claves de la Demostración



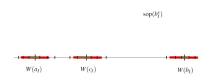
#### Entonces

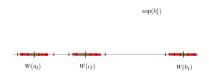
$$\sum_{J \in B} |\langle b_I^{\epsilon}, b_J^{\epsilon} \rangle|^2 \leq \epsilon^2 \sum_{J \in B} \left( \frac{w(J)}{w(I)} \right)^3 \leq c \epsilon^2 (1/2)^{2\gamma(j-i)}$$

$$\left\|T_{i}T_{j}^{*}f\right\|^{2} = \sum_{I \in \mathcal{D}^{i}} \left(\sum_{J \in \mathcal{D}^{i}} \langle f, H_{J}^{w} \rangle \langle b_{I}^{\epsilon}, b_{J}^{\epsilon} \rangle\right)^{2}$$



$$\left\|T_{i}T_{j}^{*}f\right\|^{2} = \sum_{I \in \mathcal{D}^{i}} \left(\sum_{J \in \mathcal{D}^{i}} \langle f, H_{J}^{w} \rangle \langle b_{I}^{\epsilon}, b_{J}^{\epsilon} \rangle\right)^{2}$$





$$\sum_{J \in C} \left| \langle b_J^{\epsilon}, b_I^{\epsilon} \rangle \right|^2 \leq c \epsilon^2 \frac{w(J)}{w(I)} \leq c \epsilon^2 (1/2)^{\gamma(j-i)}$$

$$\left\|T_iT_j^*f
ight\|^2 = \sum_{I \in \mathcal{D}^i} \left(\sum_{J \in \mathcal{D}^j} \langle f, H_J^w 
angle \langle b_I^\epsilon, b_J^\epsilon 
angle
ight)^2$$



### Claves de la Demostración

$$\left\|T_iT_j^*f
ight\|^2 = \sum_{I \in \mathcal{D}^i} \left(\sum_{J \in \mathcal{D}^j} \langle f, H_J^w 
angle \langle b_I^\epsilon, b_J^\epsilon 
angle
ight)^2$$



### Claves de la Demostración

$$\left\|T_iT_j^*f
ight\|^2 = \sum_{I \in \mathcal{D}^i} \left(\sum_{J \in \mathcal{D}^j} \langle f, H_J^w 
angle \langle b_I^\epsilon, b_J^\epsilon 
angle
ight)^2$$



### Claves de la Demostración

$$\left\|T_iT_j^*f\right\|^2 = \sum_{I \in \mathcal{D}^i} \left(\sum_{J \in \mathcal{D}^j} \langle f, H_J^w \rangle \langle b_I^\epsilon, b_J^\epsilon \rangle\right)^2 \le c\epsilon^2 (1/2)^{\gamma|i-j|}$$

### Claves de la Demostración

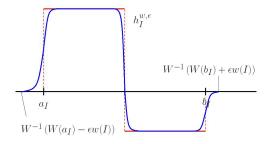
$$\left\|T_i T_j^* f\right\|^2 = \sum_{I \in \mathcal{D}^i} \left( \sum_{J \in \mathcal{D}^j} \langle f, H_J^w \rangle \langle b_I^\epsilon, b_J^\epsilon \rangle \right)^2 \le c \epsilon^2 (1/2)^{\gamma |i-j|}$$

por lo tanto  $\{H_J^{w,\epsilon}\}$  es una base de Riesz en  $L^2(\mathbb{R})$  con cotas  $(1 \pm \sqrt{c\epsilon^{1/2}})^2$ .

Finalmente, sea

$$h_{I}^{w,\epsilon}(x) = (H_{I}^{w,\epsilon} \circ W)(x) \tag{1}$$

para  $\epsilon$  lo suficientemente pequeño y positivo.



#### **TEOREMA**

Sea w un peso en la clase  $A_{\infty}(\mathbb{R})$ . Entonces existe  $\epsilon_0 > 0$  dependiendo sólo de w tal que

- A) para cada  $\epsilon < \epsilon_0$ , el sistema  $\{h_I^{w,\epsilon}. I \in \mathcal{D}\}$  es una base de Riesz para  $L^2(wdx)$  de funciones absolutamente continuas,
- B) las cotas Riesz de  $\{h_I^{w,\epsilon}, I \in \mathcal{D}\}$  pueden resultar tan cercanas a uno como se desee tomando  $\epsilon$  lo suficientemente pequeño,
- C) el soporte de cada  $h_I^{w,\epsilon}$  es un intervalo  $I^{\epsilon} = [a_I^{\epsilon}, b_I^{\epsilon}]$ . Además  $a_I^{\epsilon} \nearrow a_I$ ,  $b_I^{\epsilon} \searrow b_I$  cuando  $\epsilon \to 0$  y  $0 < \frac{|I^{\epsilon}|}{|I|} 1 < C\epsilon^{\frac{1}{p}}$  si  $w \in A_p$  para alguna constante C.

# BASES DE RIESZ CONTINUAS PARA ESPACIOS $L^2$ CON PESOS DE VARIABLES SEPARADAS EN $\mathbb{R}^n$

# Bases de Riesz continuas para espacios $L^2$ con pesos de variables separadas en $\mathbb{R}^n$

Diremos que  $w \in A_{\infty}^{v,s}(\mathbb{R}^n)$  sii  $w(x) = w(x_1,...,x_n) = \prod_{i=1}^n w_i(x_i)$ , donde  $w_i \in A_{\infty}(\mathbb{R})$ .

# Bases de Riesz continuas para espacios $L^2$ con pesos de variables separadas en $\mathbb{R}^n$

## Caso "multiparamétrico"

### **TEOREMA**

•  $\{\psi_l^{(1)}\}$  base de Riesz en  $L^2(\mathbb{R}, w_1 dx)$  con cotas  $A_1$  y  $B_1$ ,

# BASES DE RIESZ CONTINUAS PARA ESPACIOS $L^2$ CONPESOS DE VARIABLES SEPARADAS EN $\mathbb{R}^n$

## Caso "multiparamétrico"

### **TEOREMA**

- $\{\psi_l^{(1)}\}$  base de Riesz en  $L^2(\mathbb{R}, w_1 dx)$  con cotas  $A_1$  y  $B_1$ ,
- $\{\psi_l^{(2)}\}$  base de Riesz en  $L^2(\mathbb{R}, w_2 dx)$  con cotas  $A_2$  y  $B_2$ ,

# BASES DE RIESZ CONTINUAS PARA ESPACIOS $L^2$ CONPESOS DE VARIABLES SEPARADAS EN $\mathbb{R}^n$

## Caso "multiparamétrico"

### **TEOREMA**

- $\{\psi_l^{(1)}\}$  base de Riesz en  $L^2(\mathbb{R}, w_1 dx)$  con cotas  $A_1$  y  $B_1$ ,
- $\{\psi_l^{(2)}\}$  base de Riesz en  $L^2(\mathbb{R}, w_2 dx)$  con cotas  $A_2$  y  $B_2$ , :
- $\{\psi_l^{(n)}\}$  base de Riesz en  $L^2(\mathbb{R}, w_n dx)$  con cotas  $A_n$  y  $B_n$ ,

# Bases de Riesz continuas para espacios $L^2$ con pesos de variables separadas en $\mathbb{R}^n$

## Caso "multiparamétrico"

#### **TEOREMA**

- $\{\psi_l^{(1)}\}$  base de Riesz en  $L^2(\mathbb{R}, w_1 dx)$  con cotas  $A_1$  y  $B_1$ ,
- $\{\psi_l^{(2)}\}$  base de Riesz en  $L^2(\mathbb{R}, w_2 dx)$  con cotas  $A_2$  y  $B_2$ ,  $\vdots$
- $\{\psi_l^{(n)}\}$  base de Riesz en  $L^2(\mathbb{R}, w_n dx)$  con cotas  $A_n$  y  $B_n$ ,
- Si

$$\psi_{\lambda}(x) = \prod_{i=1}^{n} \psi_{l_i}^{(i)}(x_i).$$

# BASES DE RIESZ CONTINUAS PARA ESPACIOS $L^2$ CONPESOS DE VARIABLES SEPARADAS EN $\mathbb{R}^n$

## Caso "multiparamétrico"

#### **TEOREMA**

- $\{\psi_l^{(1)}\}$  base de Riesz en  $L^2(\mathbb{R}, w_1 dx)$  con cotas  $A_1$  y  $B_1$ ,
- $\{\psi_l^{(2)}\}$  base de Riesz en  $L^2(\mathbb{R}, w_2 dx)$  con cotas  $A_2$  y  $B_2$ ,  $\vdots$
- $\{\psi_l^{(n)}\}$  base de Riesz en  $L^2(\mathbb{R}, w_n dx)$  con cotas  $A_n$  y  $B_n$ ,
- Si

$$\psi_{\lambda}(x) = \prod_{i=1}^{n} \psi_{l_i}^{(i)}(x_i).$$

Entonces  $\{\psi_{\lambda}\}$  es una base de Riesz sobre  $L^2(\mathbb{R}^n, wdx)$  con cotas  $A = \prod_{i=1}^n A_i \ y \ B := \prod_{i=1}^n B_i$ .

# Bases de Riesz continuas para espacios $L^2$ con pesos de variables separadas en $\mathbb{R}^n$

## Caso "multiparamétrico"

#### **COROLARIO**

Dado  $\epsilon > 0$ , sean  $w_i$ , con i = 1, ..., n, pesos de Muckenhoupt pertenecientes a las clases  $A_{\infty}(\mathbb{R})$ . Sean  $\{h_I^{w_i, \epsilon}, I \in \mathcal{D}(\mathbb{R})\}$ , el sistema de Riesz en  $L^2(\mathbb{R}, w_i dx_i)$ . Dado  $\vec{J} = (J_1, ..., J_n) \in \mathcal{D}(\mathbb{R})^n$ , sea

$$\psi_{\vec{J}}^{\epsilon} := \prod_{i=1}^{n} h_{J_i}^{w_i, \epsilon}.$$

Entonces el sistema  $\{\psi_{\vec{J}}^{\epsilon}, \vec{J} \in \mathcal{D}(\mathbb{R})^n\}$ , es una base de Riesz sobre  $L^2(\mathbb{R}^n, wdx)$ , donde  $w = \prod_{i=1}^n w_i$ . Cada  $\psi_{\vec{J}}^{\epsilon}$  es continua y tiene soporte compacto.

## Bases de Riesz continuas para espacios $L^2$ con pesos de variables separadas en $\mathbb{R}^n$

## Caso "uniparamétrico"

### **TEOREMA**

Dado  $\epsilon > 0$  suficientemente pequeño, la familia de funciones  $\{\mathfrak{h}_Q^{w,\lambda,\epsilon}\}$  es una base de Riesz de funciones continuas en  $L^2(\mathbb{R}^n,wdx)$  con cotas tan cercanas a uno y con soportes tan ajustados a los cubos diádicos como se quiera.

Espacios de tipo Homogéneo

## Espacios de tipo Homogéneo

#### DEFINICIÓN

Una casi-métrica sobre un conjunto X es una función  $\rho: X \times X \to [0, \infty)$  tal que

- $\rho(x, y) = 0$  si y sólo si x = y;
- $\rho(x, y) = \rho(y, x)$  para dodo  $x, y \in X$ ;
- existe K > 1 tal que  $\rho(x, y) \le K(\rho(x, z) + \rho(z, y))$  para todo  $x, y, z \in X$ .

## Espacios de tipo Homogéneo

#### DEFINICIÓN

*Una casi-métrica sobre un conjunto X es una función*  $\rho: X \times X \to [0, \infty)$  *tal que* 

- $\rho(x, y) = 0$  si y sólo si x = y;
- $\rho(x, y) = \rho(y, x)$  para dodo  $x, y \in X$ ;
- existe K > 1 tal que  $\rho(x, y) \le K(\rho(x, z) + \rho(z, y))$  para todo  $x, y, z \in X$ .

#### DEFINICIÓN

Un espacio de tipo homogeneo  $(X, \rho, \mu)$  es un espacio casi-métrico con una medida  $\mu$ , doblante respecto de la casi-métrica  $\rho$ , esto es, existe A>0 tal que para todo r>0 se verifica

$$\mu(B_{\rho}(x,2r)) \leq A\mu(B_{\rho}(x,r))$$
 para todo  $x \in X$ 

Donde  $B_{\rho}(x,r) := \{ y \in X / \rho(x,y) < r \}$  es la bola de centro x y radio r.

## Espacios de tipo Homogéneo

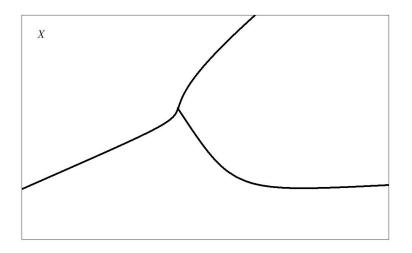
#### **DEFINICIÓN**

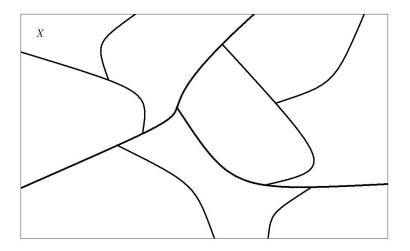
Sea  $(X,d,\mu)$  un espacio de tipo homogéneo. Diremos que X es  $\alpha$ -Ahlfors si existen  $c_1$  y  $c_2$  constantes positivas tales que

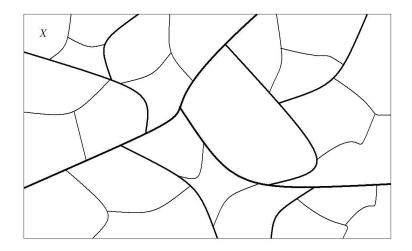
$$c_1 r^{\alpha} \le \mu \left( B(x, r) \right) \le c_2 r^{\alpha}$$

para cualquier 0 < r < diamX, y todo  $x \in X$ .

| X |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |







### Familias Diádicas

#### DEFINICIÓN

Decimos que  $\mathcal{D} = \bigcup_{j \in \mathbb{Z}} \mathcal{D}^j$  es una familia diádica sobre X con parámetro  $\delta \in (0,1)$ , abreviadamente que  $\mathcal{D}$  pertenece a  $\mathfrak{D}(\delta)$ , si cada  $\mathcal{D}^j$  es una familia de conjuntos abiertos Q de X, tal que

#### Familias Diádicas

#### DEFINICIÓN

Decimos que  $\mathcal{D} = \bigcup_{j \in \mathbb{Z}} \mathcal{D}^j$  es una familia diádica sobre X con parámetro  $\delta \in (0,1)$ , abreviadamente que  $\mathcal{D}$  pertenece a  $\mathfrak{D}(\delta)$ , si cada  $\mathcal{D}^j$  es una familia de conjuntos abiertos Q de X, tal que

#### Familias Diádicas

#### DEFINICIÓN

Decimos que  $\mathcal{D} = \bigcup_{j \in \mathbb{Z}} \mathcal{D}^j$  es una familia diádica sobre X con parámetro  $\delta \in (0,1)$ , abreviadamente que  $\mathcal{D}$  pertenece a  $\mathfrak{D}(\delta)$ , si cada  $\mathcal{D}^j$  es una familia de conjuntos abiertos Q de X, tal que

- $\bigcirc$  si  $Q_1, Q_2 \in \mathcal{D}^j$ , distintos,  $Q_1 \cap Q_2 = \emptyset$ ,
- **1** Todo cubo  $Q \in \mathcal{D}^i$  tiene un sólo padre  $J \in \mathcal{D}^j$   $(Q \subset J), j < i,$

#### Familias Diádicas

#### DEFINICIÓN

Decimos que  $\mathcal{D} = \bigcup_{j \in \mathbb{Z}} \mathcal{D}^j$  es una familia diádica sobre X con parámetro  $\delta \in (0,1)$ , abreviadamente que  $\mathcal{D}$  pertenece a  $\mathfrak{D}(\delta)$ , si cada  $\mathcal{D}^j$  es una familia de conjuntos abiertos Q de X, tal que

- $\bigcirc$  si  $Q_1, Q_2 \in \mathcal{D}^j$ , distintos,  $Q_1 \cap Q_2 = \emptyset$ ,
- **1** Todo cubo  $Q \in \mathcal{D}^i$  tiene un sólo padre  $J \in \mathcal{D}^j$   $(Q \subset J), j < i,$

Pesos de Muckenhoupt

## Pesos de Muckenhoupt

### DEFINICIÓN

(*a*)  $1 , <math>A_p$ :

$$\left(\frac{1}{\mu(B)}\int_{B}wd\mu\right)\left(\frac{1}{\mu(B)}\int_{B}w^{-\frac{1}{p-1}}\right)^{p}\leq C.\ \forall B\subset X$$

(b)  $A_1$ :

$$\frac{1}{\mu(B)} \int_{Q} w d\mu \le C \inf_{B} w, \ \forall B \subset X$$

$$(c)A_{\infty}:=\bigcup_{p\geq 1}A_{p}.$$

Pesos de Muckenhoupt Diádicos

## Pesos de Muckenhoupt Diádicos

### DEFINICIÓN

Sea  $\mathcal{D}(X) \in \mathfrak{D}(\delta)$  una familia de cubos diádicos en X.

• 
$$A_p^{dy}$$
,  $1 ,$ 

$$\left(\int_{Q} 
u d\mu
ight) \left(\int_{Q} 
u^{-rac{1}{p-1}} d\mu
ight)^{p-1} \leq C \mu(Q)^{p}, \qquad \quad orall Q \in \mathcal{D}$$

$$\bullet \ \nu \in A_1^{dy}$$

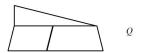
$$\frac{1}{\mu(Q)} \int_{Q} \nu d\mu \le C \inf_{Q} \text{ess } \nu \,\forall Q \in \mathcal{D} \tag{1}$$

$$\bullet \ A^{dy}_{\infty} = \bigcup_{p \ge 1} A^{dy}_p$$

Sistemas de Haar

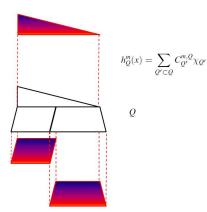
#### Sistemas de Haar

$$h_{\mathcal{Q}}^m(x) = \sum_{\mathcal{Q}' \subset \mathcal{Q}} C_{\mathcal{Q}'}^{m,\mathcal{Q}} \chi_{\mathcal{Q}'}$$



#### Sistemas de Haar

$$h_{\mathcal{Q}}^m(x) = \sum_{\mathcal{Q}' \subset \mathcal{Q}} C_{\mathcal{Q}'}^{m,\mathcal{Q}} \chi_{\mathcal{Q}'}$$



#### Sistemas de Haar

### Sistemas de Haar

Trabajamos con una familia de funciones asociadas a una familia diádica  $\mathcal{D}$ , que cumple las siguientes propiedades:

• Para cada  $h \in \mathcal{H}$  existe una única  $j \in \mathbb{Z}$  y un cubo  $Q = Q(h) \in \mathcal{D}^j$  tal que  $\{x \in X : h(x) \neq 0\} \subseteq Q$ , y esta propiedad no se cumple para ningún cubo en  $\mathcal{D}^{j+1}$ .

#### Sistemas de Haar

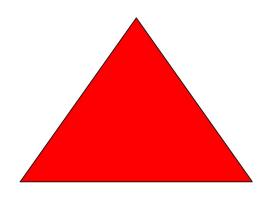
- Para cada  $h \in \mathcal{H}$  existe una única  $j \in \mathbb{Z}$  y un cubo  $Q = Q(h) \in \mathcal{D}^j$  tal que  $\{x \in X : h(x) \neq 0\} \subseteq Q$ , y esta propiedad no se cumple para ningún cubo en  $\mathcal{D}^{j+1}$ .
- Para cualquier  $Q \in \mathcal{D} = \bigcup_{j \in \mathbb{Z}} \mathcal{D}^j$  existe exactamente  $M_Q = \#(\mathcal{O}(Q)) 1 \ge 1$  funciones  $h \in \mathcal{H}$  tales que el primer item se cumple.

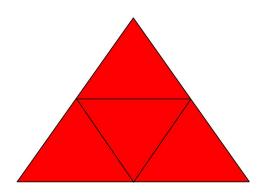
#### Sistemas de Haar

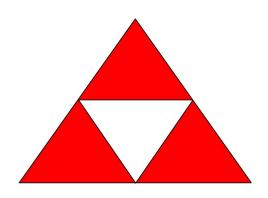
- Para cada  $h \in \mathcal{H}$  existe una única  $j \in \mathbb{Z}$  y un cubo  $Q = Q(h) \in \mathcal{D}^j$  tal que  $\{x \in X : h(x) \neq 0\} \subseteq Q$ , y esta propiedad no se cumple para ningún cubo en  $\mathcal{D}^{j+1}$ .
- Para cualquier  $Q \in \mathcal{D} = \bigcup_{j \in \mathbb{Z}} \mathcal{D}^j$  existe exactamente  $M_Q = \#(\mathcal{O}(Q)) 1 \ge 1$  funciones  $h \in \mathcal{H}$  tales que el primer item se cumple.
- Para cada  $h \in \mathcal{H}$  obtenemos que  $\int_X h d\mu = 0$ .

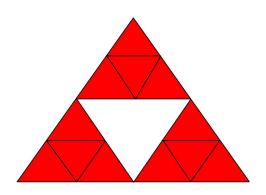
#### Sistemas de Haar

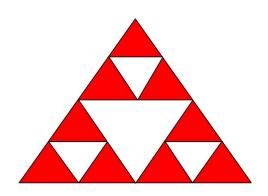
- Para cada  $h \in \mathcal{H}$  existe una única  $j \in \mathbb{Z}$  y un cubo  $Q = Q(h) \in \mathcal{D}^j$  tal que  $\{x \in X : h(x) \neq 0\} \subseteq Q$ , y esta propiedad no se cumple para ningún cubo en  $\mathcal{D}^{j+1}$ .
- Para cualquier  $Q \in \mathcal{D} = \bigcup_{j \in \mathbb{Z}} \mathcal{D}^j$  existe exactamente  $M_Q = \#(\mathcal{O}(Q)) 1 \ge 1$  funciones  $h \in \mathcal{H}$  tales que el primer item se cumple.
- Para cada  $h \in \mathcal{H}$  obtenemos que  $\int_X h d\mu = 0$ .
- El sistema  $\{h\}$  es una base ortonormal de  $L^2(X)$  si  $\mu(X) = \infty$  y  $\{h\} \cup \{\mu(X)^{-1/2}\}$  es una base ortonormal de  $L^2(X)$  si  $\mu(X) < \infty$ .

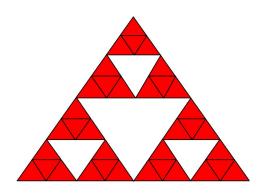


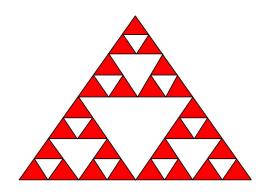


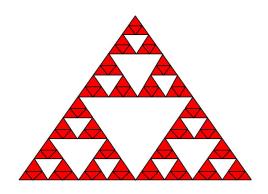


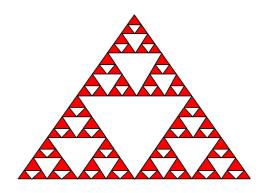


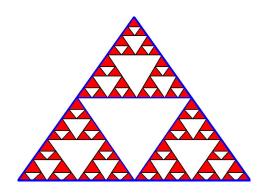


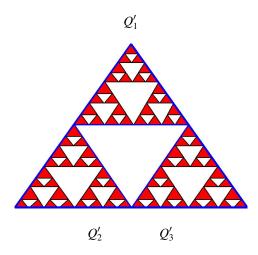


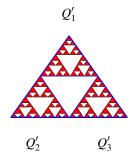












$$\begin{split} h_{\mathcal{Q}}^1(x) &:= \frac{4}{\sqrt{42}} (3^{j+1})^{1/2} \left( 1\chi_{\mathcal{Q}_1'}(x) + 1/4\chi_{\mathcal{Q}_2'}(x) - 5/4\chi_{\mathcal{Q}_3'}(x) \right), \\ h_{\mathcal{Q}}^2(x) &:= \frac{3}{\sqrt{14}} (3^{j+1})^{1/2} \left( -2/3\chi_{\mathcal{Q}_1'}(x) + 1\chi_{\mathcal{Q}_2'}(x) - 1/3\chi_{\mathcal{Q}_3'}(x) \right), \end{split}$$

Caracterización de Espacios de Banach de funciones con wavelets de Haar

$$\mathbb{B}^{r} = \{f/||f|^{r} \in \mathbb{B}\}$$

$$\mathbb{B}' = \{f/\sup_{\|g\|_{\mathbb{B}} = 1} \int_{X} fg d\mu < \infty\}$$

$$M^{\text{dy}} f(x) := \sup_{Q \ni x} \frac{1}{\mu(Q)} \int_{Q} |f| d\mu$$

# Caracterización de Espacios de Banach de funciones con wavelets de Haar

Denotamos  $L_c^{\infty}$  al espacio de las funciones acotadas con soporte compacto definido por

$$L_c^{\infty} = L_c^{\infty}(X, \mu) = \{ f \in L^{\infty}(X) / \operatorname{sop}(f) \subset B(x_0, r) \text{ para algún } x_0 \in X, r > 0 \}.$$

Diremos que  $\mathbb{B}$  es un E.B.F. con la propiedad  $\mathfrak{A}$ , si  $L_c^{\infty}$  es denso en  $\mathbb{B}$  y existe un número real  $p_1 > 1$  tal que  $\mathbb{B}^{1/p_1}$  es un E.B.F. cumpliendo que

$$\left\|M^{\mathrm{dy}}f\right\|_{\left(\mathbb{B}^{1/p_1}\right)'}\leq c\left\|f\right\|_{\left(\mathbb{B}^{1/p_1}\right)'},$$

donde  $M^{dy}$  es el operador Maximal diádico de Hardy-Littlewood.



# Caracterización de Espacios de Banach de funciones con wavelets de Haar

#### **TEOREMA**

Sea  $(X, d, \mu)$  un espacio de tipo homogéneo y  $\mathcal H$  un sistema de Haar. Sea  $\mathbb B$  un E.B.F. con la propiedad  $\mathfrak A$ . Entonces  $\mathcal H$  es una base incondicional para  $\mathbb B$ . Además, existen dos constantes positivas  $c_1$  y  $c_2$  tales que, para cualquier  $f \in \mathbb B$ , las siguientes desigualdades se cumplen

$$c_1 \|f\|_{\mathbb{B}} \le \|Sf\|_{\mathbb{B}} \le c_2 \|f\|_{\mathbb{B}},$$
 (1)

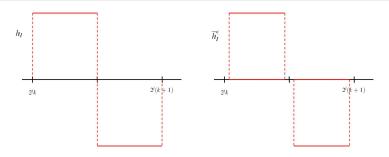
donde

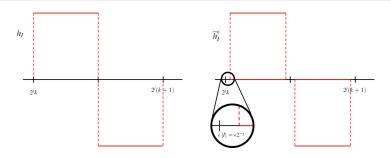
$$S(f)(x) = \left(\sum_{h \in \mathcal{H}} |\langle f, h \rangle|^2 |h(x)|^2\right)^{1/2}.$$
 (2)

### **Casos particulares:**

- $\mathbb{B} = L^p(X, \mu), 1$
- $\mathbb{B} = L^{p,q}(X,\mu), \ 1 < p,q < \infty,$
- $\mathbb{B} = L^{p(\cdot)}(X,\mu)$ , si M está acotada sobre  $L^{p(\cdot)}(X,\mu)$  en  $L^{p(\cdot)}(X,\mu)$ . Si X es  $\alpha$ -Ahlfors,  $\mu(X) < \infty$  es suficiente pedir que el exponente p satisfaga

$$|p(x) - p(y)| \le \frac{c}{-\log(d(x, y))}.$$





#### **TEOREMA**

Sea  $\epsilon>0$  "lo suficientemente pequeño". Dado  $I\in\mathcal{D}$  sea  $E_I$  tal que

- (1)  $E_I$  es unión de dos sub-intervalos de I, simétricos con respecto al centro del intervalo I,
- (II)  $|I \setminus E_I| \le \epsilon |I|$ , para todo  $I \in \mathcal{D}$ .

Entonces la familia  $\{\overline{h}_I^{\epsilon} = h_I \chi_{E_I}, I \in \mathcal{D}\}$  es una base de Riesz en  $L^2(\mathbb{R})$ , con cotas  $A_{\epsilon} = (1 - (c^2 \epsilon)^{1/2})^2$  y  $B_{\epsilon} = (1 + (c^2 \epsilon)^{1/2})^2$ .

### DEMOSTRACIÓN.

- $\bullet \ \overline{b}_I^\epsilon = h_I \overline{h}_I^\epsilon,$
- por Favier-Zalik es suficiente ver que  $\sum_{I \in \mathcal{D}} \left| \langle f, \overline{b}_I^{\epsilon} \rangle \right|^2 \le c_{\epsilon} \left\| f \right\|_{L^2(\mathbb{R})}^2$ ,
- para probar la desigualdad usamos el Lema de Cotlar y el Lema de Schur.

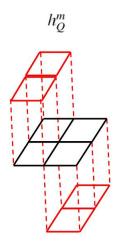


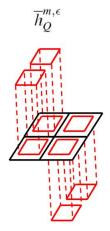
#### **TEOREMA**

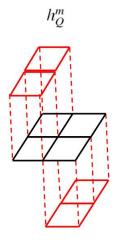
Sea  $I \in \mathcal{D}$  y  $E_I$  un subconjunto de I cumpliendo las siguientes propiedades,

- (I)  $\int_{E_I} h_I dx = 0$ , para todo  $I \in \mathcal{D}$ .
- (II)  $\left(\overline{I \backslash E_I}\right)^c$  tiene a lo sumo m componentes conexas.
- (III)  $|I \setminus E_I| \le \epsilon |I|$ , para todo  $I \in \mathcal{D}$ .

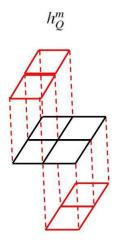
Entonces la familia  $\{\overline{h}_I^{\epsilon} = h_I \chi_{E_I}, I \in \mathcal{D}\}$  es una base de Riesz en  $L^2(\mathbb{R})$ , con cotas  $A_{\epsilon} = (1 - (c^2 \epsilon)^{1/2})^2$  y  $B_{\epsilon} = (1 + (c^2 \epsilon)^{1/2})^2$ .

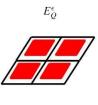


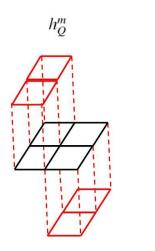


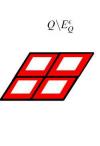












#### **TEOREMA**

- Sea  $\epsilon > 0$  dado.
- $si |Q' \backslash K_{Q'}| \leq 2^{-n} \epsilon |Q|$ .
- Sea  $E_Q^{\epsilon} = \bigcup_{Q' \subset Q} K_{Q'} \ y \ \overline{h}_Q^{m,\epsilon} = h_Q^m \chi_{E_Q^{\epsilon}} \ y \ supongamos \ que \ \overline{h}_Q^{m,\epsilon}$  tiene integral nula.

Entonces el sistema  $\{\overline{h}_Q^{m,\epsilon} = h_Q^m \chi_{E_Q^{\epsilon}}, \ Q \in \mathcal{D}, \ m = 1, ..., 2^n - 1\}$  es una base de Riesz en  $L^2(\mathbb{R}^n)$  con cotas Riesz  $A_{\epsilon} = [1 - (C^2 \epsilon)^{1/2}]^2$  y  $B_{\epsilon} = [1 + (C^2 \epsilon)^{1/2}]^2$ , con C dependiendo sólo de n.

#### Claves de la Demostración

Analizamos el operador

$$Tf = \sum_{i \in \mathbb{Z}} \sum_{\substack{Q \in \mathcal{D}^i \\ m = 1, \dots, 2^n - 1}} \langle f, \overline{b}_Q^{m, \epsilon} \rangle h_Q^m = \sum_{i \in \mathbb{Z}} T_i f,$$

$$\begin{array}{l} \text{donde} \\ \overline{b}_Q^{m,\epsilon} = h_Q^m - \overline{h}_Q^{m,\epsilon} \end{array}$$

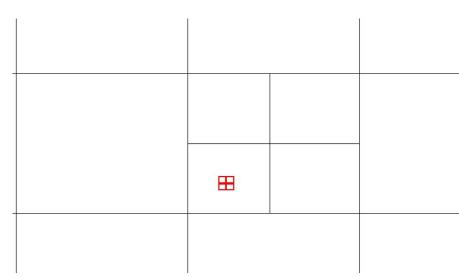
#### Claves de la Demostración

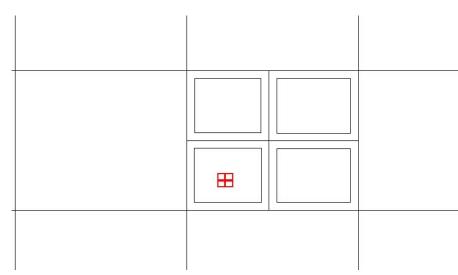
$$\left\|T_iT_j^*f\right\|_{L^2(\mathbb{R}^n)}^2 = \sum_{\substack{Q \in \mathcal{D}^i \\ m=1,\dots,2^n-1}} \left(\sum_{\substack{J \in \mathcal{D}^j \\ k=1,\dots,2^n-1}} \langle f, h_J^k \rangle \langle \overline{b}_Q^{m,\epsilon}, \overline{b}_J^{k,\epsilon} \rangle\right)^2.$$

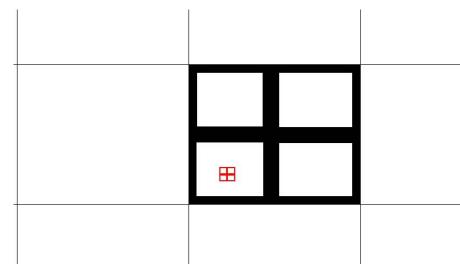


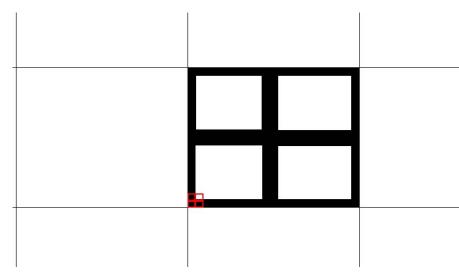


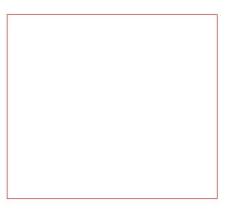
|    | <br> |  |
|----|------|--|
| 75 |      |  |
|    |      |  |
|    | ⊞    |  |
|    |      |  |

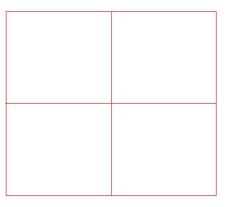


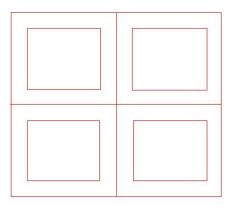


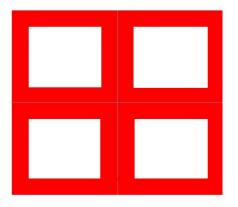


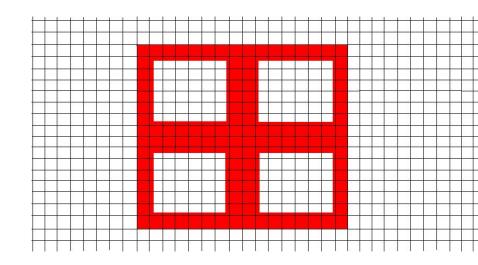




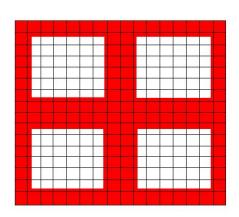




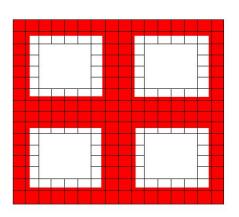




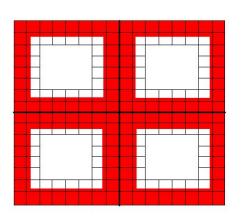




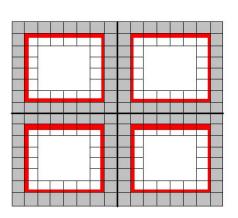




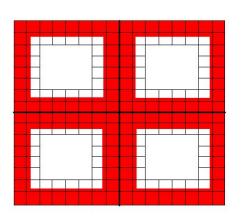








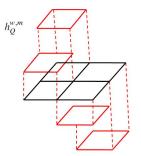




# Bases de Riesz en $L^2(\mathbb{R}^n,wdx)$ de perturbaciones de sistemas de wavelets de Haar desbalanceadas

### Bases de Riesz en $L^2(\mathbb{R}^n, wdx)$ de perturbaciones de sistemas de Wavelets de Haar desbalanceadas

$$H^{w}(\mathbb{R}^{n}) = \{h_{Q}^{w,m}, Q \in \mathcal{D}, m = 1, ..., 2^{n} - 1\}, h_{Q}^{w,m} = \sum_{Q' \subset Q} C_{Q'}^{m,Q} \chi_{Q'}$$



### BASES DE RIESZ EN $L^2(\mathbb{R}^n, wdx)$ DE PERTURBACIONES DE SISTEMAS DE WAVELETS DE HAAR DESBALANCEADAS

dado  $\epsilon > 0$ ,  $Q' \subset Q$ .

$$K_{Q'}^{m,\epsilon} := \{ x \in Q' / d(x, Q'^c) \ge \rho_{Q'}^{m,\epsilon} \},$$

donde elegimos  $\rho_{Q'}^{m,\epsilon}$  de modo que

- $w(Q' \setminus K_{Q'}^{m,\epsilon}) \le \epsilon 2^{-n} w(Q)$
- $\bullet \sum_{Q' \subset Q} C_{Q'}^{m,Q} w(K_{Q'}^{m,\epsilon}) = 0$

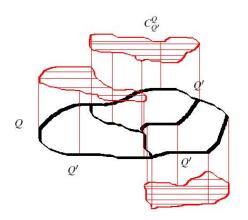
### BASES DE RIESZ EN $L^2(\mathbb{R}^n, wdx)$ DE PERTURBACIONES DE SISTEMAS DE WAVELETS DE HAAR DESBALANCEADAS

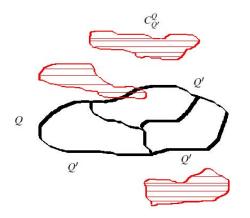
#### **TEOREMA**

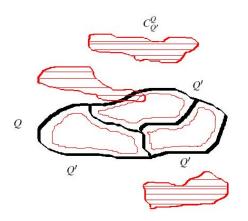
Sea w un peso en la clase  $A_{\infty}$ ,  $\mathcal{H}^w$  el sistema de wavelets de Haar desbalanceadas en  $L^2(\mathbb{R}^n, wdx)$  y  $\epsilon > 0$ , suficientemente pequeño. Entonces la familia de perturbaciones

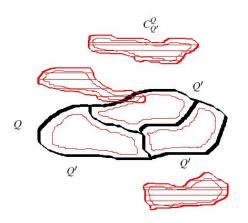
$$\overline{h}_{Q}^{w,m,\epsilon} = \sum_{Q' \subset Q} C_{Q'}^{m,Q} \chi_{K_{Q'}^{m,\epsilon}}, \ Q \in \mathcal{D}, \ m = 1, ..., 2^{n} - 1, \tag{1}$$

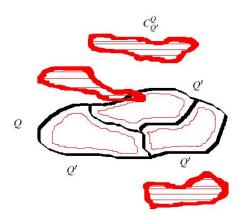
constituyen una base de Riesz de  $L^2(\mathbb{R}^n, wdx)$ , con cotas Riesz  $A^w_{\epsilon} = [1 - (c\epsilon)^{1/2}]^2$  y  $B^w_{\epsilon} = [1 + (c\epsilon)^{1/2}]^2$ .

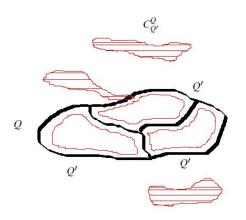


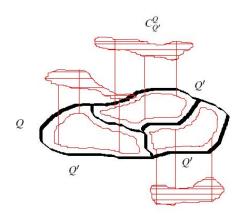


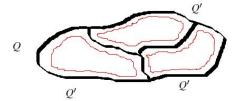


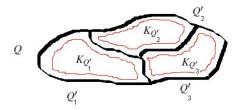


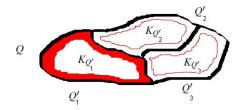


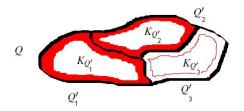


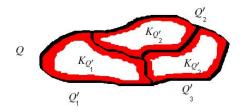












### Perturbaciones de soportes de sistemas de Haar

Dado 
$$F \subset X$$
 sea  $N_j(F) = \sharp (\{Q \in \mathcal{D}^j : \overline{Q} \cap F \neq \emptyset\})$ .

#### **DEFINICIÓN**

Definimos la dimensión "box diádica superior" de F con respecto a D, como

$$\overline{dim_{B,\mathcal{D}}}(F) := \limsup_{j \to \infty} \frac{\log_{\Delta} N_j(F)}{j},$$

donde  $\Delta = 1/\delta$ .

#### Perturbaciones de soportes de sistemas de Haar

Diremos que una familia  $\{F(t),\ t\in T\}$  de subconjuntos medibles de X tiene "dimensión box diádica superior (d.b.d.s ) uniforme menor que  $\beta$ " si

$$\lim_{J\to\infty} \sup_{j\geq J} \frac{\log_{\Delta}(N_j(F(t)))}{j} < \beta,$$

uniformemente en  $t \in T$ . Esto es, existe un J independiente de  $t \in T$  tal que

$$\sup_{j>J}\frac{\log_{\Delta}N_{j}(F(t))}{j}<\beta,$$

para todo  $t \in T$ .

### Perturbaciones de soportes de sistemas de Haar

#### **PROPOSICIÓN**

Si  $\{F(t), t \in T\}$  es una familia de subconjuntos de X con d.b.d.s. uniforme menor que  $\beta$  entonces existe un  $J \in \mathbb{Z}$  tal que

$$N_j(F(t)) = \sharp (\{Q \in \mathcal{D}^j : \overline{Q} \cap F(t) \neq \emptyset\}) \leq \Delta^{j\beta},$$

 $para\ todo\ j \ge J\ y\ para\ todo\ t \in T.$ 

#### LEMA

Supongamos ahora que  $(X,d,\mu)$  es  $\alpha$ -Ahlfors para algún  $\alpha>0$ . Sea  $Q\in \mathcal{D}$  y sea  $K_Q(\rho):=\{x\in Q: d(x,\partial Q)>\rho\}$ . Supongamos que la familia  $\{\partial K_Q(\rho):,\ \rho\geq 0\}$  tiene d.b.d.s uniforme menor que  $\beta$ , con  $\beta<\alpha$ . Entonces la función  $\mu(K_Q(\rho))$  es monótona creciente y continua y por consiguiente  $\mu(Q\setminus K_Q(\rho))$  también es continua.

#### Perturbaciones de soportes de sistemas de Haar

#### **DEFINICIÓN**

*Hipótesis*  $H(\beta)$ .

Para  $(X, d, \mu)$  y  $\mathcal{D}$  en las condiciones precedentes, diremos que  $(X, d, \mu, \mathcal{D})$  satisface la hipótesis  $H(\beta)$  si para cada  $Q \in \mathcal{D}$  y cada  $\rho > 0$  los conjuntos  $\partial K_Q(\rho)$  con  $K_Q(\rho) = \{x \in Q : d(x, \partial Q) > \rho\}$  tienen d.b.d.s. menor que  $\beta$  uniforme relativa a la escala de Q. Precisamente, existe  $J \in \mathbb{Z}$  independiente de  $\rho$  y de  $Q \in \mathcal{D}^j$  tal que, si  $I \in \mathcal{D}^i$ 

$$\sup_{j\geq J+i}\frac{\log_{\Delta}N_{j}(\partial K_{I}(\rho))}{j-i}<\beta.$$

### Perturbaciones de soportes de sistemas de Haar

#### LEMA

Sea  $(X, d, \mu)$  un espacio  $\alpha$ -Ahlfors,  $\mathcal{D}$  una familia diádica con parámetro  $\delta$  que satisface  $H(\beta)$  para algún  $\beta < \alpha$  y

 $\mathcal{H} = \{h_Q^m, \ Q \in \mathcal{D}, \ 1 \geq m \geq \sharp \mathcal{O}(Q) - 1\}$  un sistema de Haar en  $L^2(X)$ . Entonces para cada  $\epsilon > 0$  fijo y para cada  $h_Q^m \in \mathcal{H}$  podemos elegir  $\{\rho_{O'}^{m,\epsilon}, \ Q' \in \mathcal{O}(Q)\}$  todos estrictamente positivos tales que si

$$K_{Q'}^{m,\epsilon} := \{ x \in Q' / d(x, \partial Q') > \rho_{Q'}^{m,\epsilon} \}, \tag{2}$$

tenemos,

$$(A) \int_X h_Q^m(x) \chi_{\bigcup_{O' \in \mathcal{O}(O)} K_{O'}^{m,\epsilon}}(x) d\mu(x) = \int_X h_Q^m d\mu = 0.$$

$$(B) \mu \left( Q' \backslash K_{Q'}^{m,\epsilon} \right) \le c \epsilon \mu(Q').$$

#### Perturbaciones de soportes de sistemas de Haar

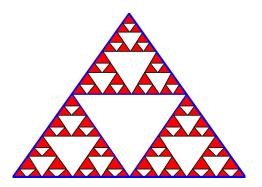
#### **TEOREMA**

Sea  $(X,d,\mu)$  un espacio  $\alpha$ -Ahlfors con  $\alpha>0$ . Sea  $\mathcal D$  una familia diádica con parámetro  $\delta$ . Supongamos que el sistema  $(X,d,\mu,\mathcal D)$  satisface la propiedad  $H(\beta)$  para algún  $0<\beta<\alpha$ . Sea  $\mathcal H$  un sistema de Haar asociado a  $\mathcal D$ . Sea  $\overline{\mathcal H}$  el conjunto de las funciones

$$\overline{h}_{Q}^{m,\epsilon} = h_{Q}^{m} \chi_{\bigcup_{Q' \in \mathcal{O}(Q)} K_{Q'}^{m,\epsilon}} = \sum_{Q' \subset Q} C_{Q'}^{Q,m} \chi_{K_{Q'}^{m,\epsilon}}. \tag{2}$$

Entonces para  $\epsilon$  suficientemente chico se tiene que  $\overline{\mathcal{H}}$  es una base de Riesz para  $L^2(X,\mu)$  con cotas Riesz tan cercanas a uno como se quiera.

Perturbaciones de soportes de sistemas de Haar



Estudiamos operadores de tipo

$$Tf = \sum_{\lambda \in \Lambda} m_{\lambda} \langle f, \alpha_{\lambda} \rangle \beta_{\lambda}.$$

donde  $\{\alpha_{\lambda}\}$  y  $\{\beta_{\lambda}\}$  son sistemas de Riesz asociados y  $\{m_{\lambda}\}$  es un multiplicador en  $l^{\infty}(\Lambda)$ .

La notación general tendrá el siguiente aspecto

$$T_{i,j}^{\vartheta,\epsilon \max{\{i,j\},k,l}} f.$$

$$\left(\sum_{\lambda\in\Lambda}m_{\lambda}\langle f,\alpha_{\lambda}\rangle\beta_{\lambda}\right)$$

#### PROPOSICIÓN

Sea  $(X,d,\mu)$  un espacio de tipo homogéneo. Sea  $w \in \mathcal{A}_{\infty}(X,d,\mu)$ . Sea  $\mathcal{H}$  un sistema de Haar desbalanceado en  $(X,d,wd\mu)$ . Sea 1 <math>y  $v \in A_p(X,d,wd\mu)$ .

Entonces la familia de operadores  $T_{0,0}^{\vartheta,0,X,w}$  está acotada en  $L^p(X,d,vwd\mu)$  uniformemente para  $|\vartheta(h)| \leq 1$ .

El valor 1 en un subíndice está asociado a un procedimiento de regularización de un sistema de Haar  $\mathcal H$  que procedemos a describir. Dado  $Q\in\mathcal D^j$  y  $\epsilon>0$  suficientemente pequeño, se define el conjunto  $K_Q^\epsilon$  como sigue

$$\mathit{K}_{\mathcal{Q}}^{\epsilon} := \overline{\{x \in \mathit{Q}/\mathit{d}(x, \mathit{Q}^{c}) > \epsilon \delta^{j}\}},.$$

que resulta compacto si (X, d) es completo.

Asociado a cada subconjunto  $K_Q^{\epsilon}$  definimos las funciones

$$\phi_Q^{\epsilon}(x) := \frac{d(x, Q^{c})}{d(x, Q^{c}) + d(x, K_Q^{\epsilon})}.$$
 (2)

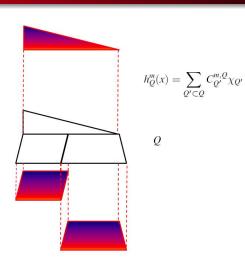
y

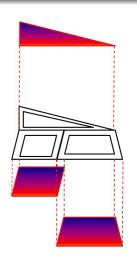
$$\psi_Q^{\epsilon} := \frac{\phi_Q^{\epsilon}}{\int \phi_Q^{\epsilon} d\mu}.\tag{3}$$

#### DEFINICIÓN

Sea  $\epsilon>0$  suficientemente pequeño y sea  $\{\psi_Q^\epsilon\}$  la sucesión de funciones dadas antes. Dada la wavelet de Haar  $h_Q^m=\sum_{Q'\subset Q}C_{Q'}^{Q,m}\chi_{Q'}$ , definimos su "función regular asociada" como

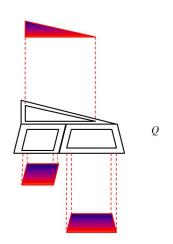
$$\tilde{h}_{Q}^{m,\epsilon}:=\sum_{\mathcal{Q}'\subset\mathcal{Q}}C_{\mathcal{Q}'}^{\mathcal{Q},m}\mu(\mathcal{Q}')\psi_{\mathcal{Q}'}^{\epsilon}.$$

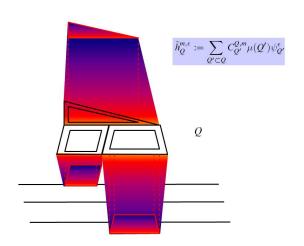




$$h_{Q}^{m}(x) = \sum_{Q' \subset Q} C_{Q'}^{m,Q} \chi_{Q'}$$

Q





La Teoría  $L^2$ 

#### La Teoría $L^2$

#### **TEOREMA**

Dado  $\epsilon > 0$  suficientemente pequeño, la sucesión de funciones  $\{\tilde{h}_Q^{m,\epsilon}, \ Q \in \mathcal{D}, \ m=1,...,\sharp \mathcal{O}(Q)-1.\}$  constituyen una sucesión de Bessel en  $L^2(X)$  de funciones con soporte localizado, lo que es equivalente a decir que el operador  $T_{1.0}^{\vartheta,\epsilon,X,1}$  está acotado en  $L^2(X)$ .

#### La Teoría $L^2$

#### **TEOREMA**

Si X es  $\alpha$ -Ahlfors entonces el operador  $T_{1,1}^{\vartheta,\epsilon,X,1}$  está acotado sobre  $L^2(X)$  con cota independiente de la sucesión  $\vartheta$ . Más precisamente

$$\left\| T_{1,1}^{\vartheta,\epsilon,X,1} f \right\|_{L^2(X)} \le \frac{c}{\epsilon^{1/2}} \left\| f \right\|_{L^2(X)}.$$

Los Núcleos

#### Los Núcleos

#### DEFINICIÓN

Si  $\Delta = \{(x,x), \ x \in \mathbb{R}^n\}$  decimos que  $K : \mathbb{R}^n \times \mathbb{R}^n \setminus \Delta \to \mathbb{C}$  es un núcleo estándar si existen  $\gamma > 0$  y C > 0 tales que

$$|K(x,y)| \le \frac{C}{|x-y|^n},\tag{2}$$

$$|K(x,y) - K(x,z)| \le C \frac{|y-z|^{\gamma}}{|x-y|^{n+\gamma}} si |x-y| > 2 |y-z|,$$
 (3)

$$|K(x,y) - K(w,y)| \le C \frac{|x-w|^{\gamma}}{|x-y|^{n+\gamma}} si |x-y| > 2|x-w|.$$
 (4)

# INTEGRALES SINGULARES Y SUMABILIDAD DE PERTURBACIONES REGULARES DE SISTEMAS DE HAAR

#### Los Núcleos

#### DEFINICIÓN

 $Si \Delta = \{(x, x), x \in X\}$  decimos que  $K : X \times X \setminus \Delta \to \mathbb{C}$  es un núcleo estándar si existen  $\gamma > 0$  y C > 0 tales que

$$|K(x,y)| \le \frac{C}{d(x,y)^{\alpha}},\tag{2}$$

$$|K(x,y) - K(x,z)| \le C \frac{d(y,z)^{\gamma}}{d(x,y)^{\alpha+\gamma}} \operatorname{si} d(x,y) > 2d(y,z),$$

$$|K(x,y) - K(w,y)| \le C \frac{d(x,w)^{\gamma}}{d(x,y)^{\alpha+\gamma}} \operatorname{si} d(x,y) > 2d(x,w).$$

$$(4)$$

$$|K(x,y) - K(w,y)| \le C \frac{d(x,w)^{\gamma}}{d(x,y)^{\alpha+\gamma}} \operatorname{si} d(x,y) > 2d(x,w).$$
 (4)

#### Los Núcleos

Si definimos el núcleo

$$K_{1,1}^{\vartheta,\epsilon,1,1}(x,y) := \sum_{I \in \mathcal{D}} \vartheta_I h_I^{\epsilon}(x) h_I^{\epsilon}(y), \tag{2}$$

entonces el operador  $T_{1,1}^{\vartheta,\epsilon,1,1}$  tiene la siguiente representación integral

$$T_{1,1}^{\vartheta,\epsilon,1,1}f(x) = \int_{\mathbb{R}} f(y)K_{1,1}^{\vartheta,\epsilon,1,1}(x,y)dy,$$

#### Los Núcleos

Si definimos el núcleo

$$K_{1,1}^{\vartheta,\epsilon,1,1}(x,y) := \sum_{I \in \mathcal{D}} \vartheta_I h_I^{\epsilon}(x) h_I^{\epsilon}(y), \tag{2}$$

entonces el operador  $T_{1,1}^{\vartheta,\epsilon,1,1}$  tiene la siguiente representación integral

$$T_{1,1}^{\vartheta,\epsilon,1,1}f(x) = \int_{\mathbb{R}} f(y)K_{1,1}^{\vartheta,\epsilon,1,1}(x,y)dy,$$

#### **TEOREMA**

El núcleo  $K_{1,1}^{\vartheta,\epsilon,1,1}$  es un núcleo estándar.

#### Los Núcleos

Dada  $f \in L^2(X) \cap L^p(X)$ , con X  $\alpha$ -Ahlfors podemos escribir al operador  $T_{1,1}^{\vartheta,\epsilon,X,1}$  como sigue

$$\begin{split} T_{1,1}^{\vartheta,\epsilon,X,1}f(x) &= \sum_{\substack{Q \in \mathcal{D} \\ m=1,\dots,\sharp\mathcal{O}(Q)-1}} \vartheta_Q^m \langle f, \tilde{h}_Q^{m,\epsilon} \rangle \tilde{h}_Q^{m,\epsilon}(x) \\ &= \int_X \left( \sum_{\substack{Q \in \mathcal{D} \\ m=1,\dots,\sharp\mathcal{O}(Q)-1}} \vartheta_Q^m \tilde{h}_Q^{m,\epsilon}(x) \tilde{h}_Q^{m,\epsilon}(y) \right) f(y) d\mu(y) \\ &= \int_X K_{1,1}^{\vartheta,\epsilon,X,1}(x,y) f(y) d\mu(y). \end{split}$$

#### Los Núcleos

Dada  $f \in L^2(X) \cap L^p(X)$ , con X  $\alpha$ -Ahlfors podemos escribir al operador  $T_{1,1}^{\vartheta,\epsilon,X,1}$  como sigue

$$\begin{split} T_{1,1}^{\vartheta,\epsilon,X,1}f(x) &= \sum_{\substack{Q \in \mathcal{D} \\ m=1,\dots,\sharp\mathcal{O}(Q)-1}} \vartheta_{Q}^{m}\langle f, \tilde{h}_{Q}^{m,\epsilon}\rangle \tilde{h}_{Q}^{m,\epsilon}(x) \\ &= \int_{X} \left( \sum_{\substack{Q \in \mathcal{D} \\ m=1,\dots,\sharp\mathcal{O}(Q)-1}} \vartheta_{Q}^{m} \tilde{h}_{Q}^{m,\epsilon}(x) \tilde{h}_{Q}^{m,\epsilon}(y) \right) f(y) d\mu(y) \\ &= \int_{X} K_{1,1}^{\vartheta,\epsilon,X,1}(x,y) f(y) d\mu(y). \end{split}$$

#### TEOREMA

El núcleo  $K_{1,1}^{\vartheta,\epsilon,X,1}$  del operador  $T_{1,1}^{\vartheta,\epsilon,X,1}$  es un núcleo estándar.

La Teoría L<sup>p</sup>

#### La Teoría $L^p$

#### TEOREMA

Dado  $\epsilon > 0$  si 1 entonces existe c tal que

$$\left\|T_{1,1}^{\vartheta,\epsilon,1,1}f\right\|_{L^p(\mathbb{R})} \leq \left\{ \begin{array}{ll} \frac{c}{\epsilon^{\frac{p}{2}-1}} \left\|f\right\|_{L^p(\mathbb{R})} & si \quad 1$$

#### La Teoría $L^p$

#### TEOREMA

Si  $(X,d,\mu)$  un espacio de tipo homogéneo  $\alpha$ -Ahlfors  $y \in > 0$  suficientemente pequeño, entonces el operador  $T_{1,0}^{\vartheta,\epsilon,X,1}$  está acotado sobre  $L^p(X)$  para  $2 \leq p < \infty$  con cota dependiente de  $\epsilon$ . Por lo tanto, por dualidad,  $(T_{0,1}^{\vartheta,\epsilon,X,1})$  está acotado en  $L^p(X)$  para  $1 con cota dependiente de <math>\epsilon$ . Más específicamente  $\left\| (T_{0,1}^{\vartheta,\epsilon,X,1})f \right\|_{L^p(X)} \leq c\epsilon^{-\frac{1}{p}} \left\| f \right\|_{L^p(X)}, \ 1 y <math display="block">\left\| T_{1,0}^{\vartheta,\epsilon,X,1}f \right\|_{L^p(X)} \leq c\epsilon^{-\frac{1}{p'}} \left\| f \right\|_{L^p(X)}, \ 2 \leq p < \infty.$ 

#### La Teoría $L^p$

#### **TEOREMA**

Si X es  $\alpha$ -Ahlfors entonces el operador  $T_{1,1}^{\vartheta,\epsilon,X,1}$  está acotado sobre  $L^p(X)$  para 1 . Más específicamente

$$\left\| T_{1,1}^{\vartheta,\epsilon,X,1} f \right\|_p \leq \frac{c}{\epsilon^{1/p}} \left\| f \right\|_p \qquad \quad 1$$

$$\left\| T_{1,1}^{\vartheta,\epsilon,X,1} f \right\|_{p} \leq \frac{c}{\epsilon^{1/p'}} \left\| f \right\|_{p} \qquad 2 \leq p < \infty.$$

Acotación con pesos de  $T_{1.1}^{\vartheta,\epsilon,X,1}$ 

Acotación con pesos de  $T_{1,1}^{\vartheta,\epsilon,X,1}$ 

#### **TEOREMA**

Sea  $1 , <math>\nu \in A_p^{dy}$ , entonces el operador  $T_{1,1}^{\vartheta,\epsilon,X,1}$  está acotado sobre  $L^p(X,\nu)$ , con constante  $c/\epsilon$ . En otros términos

$$\left\| T_{1,1}^{\vartheta,\epsilon,X,1} f \right\|_{L^{p}(X,\nu d\mu)} \le \frac{c}{\epsilon} \left\| f \right\|_{L^{p}(X,\nu d\mu)}. \tag{2}$$

### $A_n^{\text{dy}}$ como condición necesaria

Para abreviar diremos que h" $\in$ "Q si Q es el soporte diádico de h. Tomando

$$\vartheta_{\overline{h}}^{1}(h) = \begin{cases} 1 & \text{si} \quad h = \overline{h} \\ -1 & \text{si} \quad h \neq \overline{h} \end{cases}$$

У

$$\vartheta^2(h) \equiv 1$$

tenemos que  $1/2(\vartheta_{\overline{h}}^1 + \vartheta^2) = \delta_{h\overline{h}}$ . Por consiguiente

$$\frac{1}{2} \left( T_{0,0}^{\vartheta_{\overline{h}}^{1},0,X,1} + T_{0,0}^{\vartheta^{2},0,X,1} \right) (f)(x) = \pi_{\overline{h}(f)(x)}$$
$$= \langle \overline{h}, f \rangle \overline{h}(x).$$

De modo que, si sabemos que los operadores de la familia  $T_{0,0}^{\vartheta,0,X,1}$   $(\vartheta=\pm 1)$  son acotadas en  $L^p(wd\mu)$ , uniformemente en  $\vartheta$ , necesariamente cada  $\pi_h$  es acotado en  $L^p(wd\mu)$  con cotas uniformes para  $h\in\mathcal{H}_{CD}$ 

### $A_n^{\rm dy}$ como condición necesaria

 $\star$  Existe una constante c>0 tal que para todo Q y para toda elección de x e y en elementos distintos de  $\mathcal{O}(Q)$  se tiene que

$$-\sum_{h''\in Q'}h(x)h(y)\geq \frac{c}{\mu(Q)}.$$

### $A_n^{dy}$ como condición necesaria

 $\star$  Existe una constante c>0 tal que para todo Q y para toda elección de x e y en elementos distintos de  $\mathcal{O}(Q)$  se tiene que

$$-\sum_{h''\in Q'} h(x)h(y) \ge \frac{c}{\mu(Q)}.$$

#### **TEOREMA**

Supongamos que  $\mathcal{H}$  verifica  $\star$ . Si la familia de operadores  $T_{0,0}^{\vartheta,0,X,1}$  está acotada uniformemente en  $L^p(wd\mu)$  para toda sucesión  $\vartheta$  con  $|\vartheta|=1$ , con  $1 , entonces <math>w \in A_p^{dy}(X,d,\mu)$ .

### $A_n^{dy}$ como condición necesaria

#### **TEOREMA**

Supongamos que  $\mathcal{H}$  verifica  $\star$ . Si la familia de operadores  $T_{0,0}^{\vartheta,0,X,1}$  está acotada uniformemente en  $L^p(wd\mu)$  para toda sucesión  $\vartheta$  con  $|\vartheta|=1$ , con  $1 , entonces <math>w \in A_p^{dy}(X,d,\mu)$ .

#### Demostración

$$w\left(\left\{x\in X:\ \left|\sum_{h^{n}\in Q}\pi_{h}(f)(x)\right|>\lambda\right\}\right)\leq \frac{\tilde{c}}{\lambda^{p}}\int_{X}|f|^{p}\,wd\mu.$$

### $A_n^{dy}$ como condición necesaria

#### **TEOREMA**

Supongamos que  $\mathcal{H}$  verifica  $\star$ . Si la familia de operadores  $T_{0,0}^{\vartheta,0,X,1}$  está acotada uniformemente en  $L^p(wd\mu)$  para toda sucesión  $\vartheta$  con  $|\vartheta|=1$ , con  $1 , entonces <math>w \in A_p^{dy}(X,d,\mu)$ .

#### Demostración

Si  $f \geq 0$ , con integral positiva soportada en  $Q_i'$  y  $x \in Q \setminus Q_i' = \bigcup_{l \neq i} Q_l'$ , entonces

$$\left| \sum_{h"\in"Q} \pi_h f(x) \right| = \left| \int_{Q_i'} \left( \sum_{h"\in"Q} h(y)h(x) \right) f(y) d\mu(y) \right|$$

$$\geq \frac{c}{\mu(Q)} \int_{Q_i'} f d\mu.$$



## $A_n^{dy}$ como condición necesaria

#### **TEOREMA**

Supongamos que  $\mathcal{H}$  verifica  $\star$ . Si la familia de operadores  $T_{0,0}^{\vartheta,0,X,1}$  está acotada uniformemente en  $L^p(wd\mu)$  para toda sucesión  $\vartheta$  con  $|\vartheta|=1$ , con  $1 , entonces <math>w \in A_p^{dy}(X,d,\mu)$ .

### Demostración

entonces

$$\sum_{l\neq i} w(Q'_l) \leq \frac{c}{\left(\frac{1}{\mu(Q'_l)} \int_{Q'_l} f d\mu\right)^p} \int_{Q'_l} f^p w d\mu.$$

## $A_n^{dy}$ como condición necesaria

#### **TEOREMA**

Supongamos que  $\mathcal{H}$  verifica  $\star$ . Si la familia de operadores  $T_{0,0}^{\vartheta,0,X,1}$  está acotada uniformemente en  $L^p(wd\mu)$  para toda sucesión  $\vartheta$  con  $|\vartheta|=1$ , con  $1 , entonces <math>w \in A_p^{dy}(X,d,\mu)$ .

#### Demostración

entonces

$$\sum_{l\neq i} w(Q'_l) \leq \frac{c}{\left(\frac{1}{\mu(Q'_l)} \int_{Q'_l} f d\mu\right)^p} \int_{Q'_l} f^p w d\mu.$$

 $si f \equiv 1$  esto implica que

$$w(Q_i') \le w(Q) \le (1+c)w(Q_i').$$



## $A_n^{dy}$ como condición necesaria

#### **TEOREMA**

Supongamos que  $\mathcal{H}$  verifica  $\star$ . Si la familia de operadores  $T_{0,0}^{\vartheta,0,X,1}$  está acotada uniformemente en  $L^p(wd\mu)$  para toda sucesión  $\vartheta$  con  $|\vartheta|=1$ , con  $1 , entonces <math>w \in A_p^{dy}(X,d,\mu)$ .

### Demostración

como w duplica entonces

$$\sum_{l\neq i} w(Q'_l) \leq \frac{c}{\left(\frac{1}{\mu(Q'_i)} \int_{Q'_i} f d\mu\right)^p} \int_{Q'_i} f^p w d\mu.$$

## $A_n^{dy}$ como condición necesaria

#### **TEOREMA**

Supongamos que  $\mathcal{H}$  verifica  $\star$ . Si la familia de operadores  $T_{0,0}^{\vartheta,0,X,1}$  está acotada uniformemente en  $L^p(wd\mu)$  para toda sucesión  $\vartheta$  con  $|\vartheta|=1$ , con  $1 , entonces <math>w \in A_p^{dy}(X,d,\mu)$ .

### Demostración

implica

$$\left(\frac{1}{\mu(Q)}\int_{Q}fd\mu\right)^{p}\leq \frac{c}{w(Q)}\int_{Q}f^{p}wd\mu.$$

## $A_n^{dy}$ como condición necesaria

#### **TEOREMA**

Supongamos que  $\mathcal{H}$  verifica  $\star$ . Si la familia de operadores  $T_{0,0}^{\vartheta,0,X,1}$  está acotada uniformemente en  $L^p(wd\mu)$  para toda sucesión  $\vartheta$  con  $|\vartheta|=1$ , con  $1 , entonces <math>w \in A_p^{dy}(X,d,\mu)$ .

### Demostración

Si tomamos f tal que  $f^p w = f$  ( $f = w^{-\frac{1}{p-1}}$ ) obtenemos

$$\left(\frac{1}{\mu(Q)}\int_{Q}w^{-\frac{1}{p-1}}d\mu\right)^{p}\leq \frac{c}{w(Q)}\int_{Q}w^{-\frac{1}{p-1}}d\mu.$$

## $A_n^{dy}$ como condición necesaria

#### **TEOREMA**

Supongamos que  $\mathcal{H}$  verifica  $\star$ . Si la familia de operadores  $T_{0,0}^{\vartheta,0,X,1}$  está acotada uniformemente en  $L^p(wd\mu)$  para toda sucesión  $\vartheta$  con  $|\vartheta|=1$ , con  $1 , entonces <math>w \in A_p^{dy}(X,d,\mu)$ .

### Demostración

Si tomamos f tal que  $f^p w = f$  ( $f = w^{-\frac{1}{p-1}}$ ) obtenemos

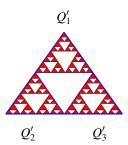
$$\left(\int_{Q} w d\mu\right) \left(\int_{Q} w^{-\frac{1}{p-1}}\right)^{p-1} \le c\mu(Q)^{p}$$

### $A_n^{\rm dy}$ como condición necesaria

 $\star$  Existe una constante c>0 tal que para todo Q y para toda elección de x e y en elementos distintos de  $\mathcal{O}(Q)$  se tiene que

$$-\sum_{h''\in Q'}h(x)h(y)\geq \frac{c}{\mu(Q)}.$$

 $A_p^{\mathbf{dy}}$  como condición necesaria Ejemplo:

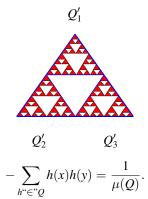


$$Q_2 \qquad Q_3$$

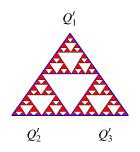
$$h_Q^1(x) := \frac{4}{\sqrt{42}} (3^{j+1})^{1/2} \left( 1\chi_{Q_1'}(x) + 1/4\chi_{Q_2'}(x) - 5/4\chi_{Q_3'}(x) \right),$$

$$h_Q^2(x) := \frac{3}{\sqrt{14}} (3^{j+1})^{1/2} \left( -2/3\chi_{Q_1'}(x) + 1\chi_{Q_2'}(x) - 1/3\chi_{Q_3'}(x) \right),$$

 $A_p^{\mathbf{dy}}$  como condición necesaria Ejemplo:



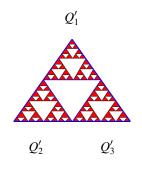
 $A_p^{dy}$  como condición necesaria



#### COROLARIO

Si F es el triángulo de Sierspinski,  $\mathcal{D}$  y  $\mathcal{H}$  como en las construcciones precedentes. Entonces  $w \in A_p^{dy}$  si y sólo si la familia  $T_{0,0}^{\vartheta,0,F,1}$  está acotada uniformemente en  $L^p(wd\mu)$  para toda sucesión  $\vartheta = \{\vartheta_Q^m\}$  con  $\left|\vartheta_Q^m\right| = 1$ .

 $A_p^{dy}$  como condición necesaria



MUCHAS GRACIAS POR SU ATENCIÓN