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Introduction

Diffuse Optical Tomography

What is Diffuse Optical Tomography (DOT)?

@ DQT is a non-invasive technique that utilize light in the near infrared
spectral region to measure the optical properties of physical body.

@ The object under study has to be light-transmitting or translucent, so it
works best on soft tissues such as breast and brain tissue.
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Diffuse Optical Tomography

What is Diffuse Optical Tomography (DOT)?

@ DQT is a non-invasive technique that utilize light in the near infrared
spectral region to measure the optical properties of physical body.

@ The object under study has to be light-transmitting or translucent, so it
works best on soft tissues such as breast and brain tissue.

@ By monitoring spatial-temporal variations in the light absorption and
scattering of the tissue, spatial maps of properties such as total
hemoglobin concentration, blood oxygen saturation and scattering can
be obtained.

@ DOT has been applied breast cancer imaging, brain functional imaging,
stroke detection, muscle functional studies, etc.



Introduction

Diffuse Optical Tomography

The mathematical model

A simplified equation to model the light propagation is the following:

ou

—V-(a(x)Vu)+c(x)u=0 inQ
(DP) { a(x)g =g onl.

@ u photon density.
@ a(x) diffusion coefficient.

@ ¢(x) absorption coefficient.
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Diffuse Optical Tomography

Forward map

Parameter-to-measurement (forward) map

F:=F,:D(F) — HYXI)
(a,c) — h:=u|r,

@ where u = u(g) is the unique solution of (DP) given the boundary data g
and the pair (a,c).



Introduction

Diffuse Optical Tomography

Forward map

Parameter-to-measurement (forward) map

F:=F,:D(F) — HYXI)
(a,c) — h:=u|r,

@ where u = u(g) is the unique solution of (DP) given the boundary data g
and the pair (a,c).
e D(F) is the set of piecewise constant functions (a,c) € [L'(Q)] sit.

a<a(x)<a, c<c(x)<c ae.inQ,

where a, a, ¢ and ¢ are known non negative real numbers.
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Diffuse Optical Tomography

Inverse problem

@ Since the optical properties within tissue are determined by the values
of the diffusion and absorption coefficients, the problem of interest in
DOT is the simultaneous identification of both coefficients from
measurements of near-infrared diffusive light along the tissue boundary.



Introduction

Diffuse Optical Tomography

Inverse problem

@ Since the optical properties within tissue are determined by the values
of the diffusion and absorption coefficients, the problem of interest in
DOT is the simultaneous identification of both coefficients from
measurements of near-infrared diffusive light along the tissue boundary.

@ Given a finite number of measurements h,,, corresponding to inputs

_ Oupm

8&m = Ty -

Find (a,c) € D(F) such that

Fu(a,c) =hy, form=1,... M. (1)
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Diffuse Optical Tomography

Inverse problem

@ Given the nature of the measurements, we can not expect that exact
data h,, are available. Instead, one disposes only an approximate
measured data h,ﬁn satisfying

3
Hhm fhmHLzm <38, form=1,..M

where & > 0 is the noise level.

Find (a,c) € D(F) such that

Fpla,c)=h, form=1,...,M. @)




Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Inverse Problem

Level set approach

@ Level set functions ¢, ¢¢ € H'(Q) are chosen in such a way that
discontinuities of the coeficcients (a,c) are located “along” its zero level
sets Iy := {x € Q[¢'(x) = 0}.

@ The diffusion and absorption coefficients can be written as

(a.¢) = (@ +(a' —a)H(99), + (¢! —c*)H(¢)) =t P(¢%,¢°)



Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Inverse Problem

Level set approach

@ Level set functions ¢, ¢¢ € H'(Q) are chosen in such a way that
discontinuities of the coeficcients (a,c) are located “along” its zero level
sets Iy := {x € Q[¢'(x) = 0}.

@ The diffusion and absorption coefficients can be written as
(a,¢) = (a®+ (@' —=a®)H(9"),c* + (c' = *)H(¢%)) =: P(¢",¢°)
@ Inverse problem:
Find (0¢,0¢) € [H'(Q)]? such that

Fn(P(0%,0°))=hS, for m=1,... M.




Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Inverse Problem

Level set regularization

@ A natural alternative to obtain stable solutions is to use a least-square
approach combined with a Tikhonov-type regularization

ZHF 0%) = BS |22 ) + OR(04,0°)  (3)

where

R(¢a7¢c) = ||¢a _¢(a)||12-11(g) + ||¢C _¢8||?11(g) +Ba|H(¢a)|Bv(n) +BC|H(¢6)|BV(Q)
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Level set regularization

@ A natural alternative to obtain stable solutions is to use a least-square
approach combined with a Tikhonov-type regularization
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@ o > 0 plays the role of a regularization parameter and ; are scaling
facor.
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Level set regularization

@ A natural alternative to obtain stable solutions is to use a least-square
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@ o > 0 plays the role of a regularization parameter and ; are scaling
facor.

e The H'(Q) terms act as a control on the size of the norm of the level set
function (key role to prove uniqueness of the existence of ¢').
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Level set approach: convergence analysis
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Inverse Problem

Level set regularization

@ A natural alternative to obtain stable solutions is to use a least-square
approach combined with a Tikhonov-type regularization

ZHF 0%) = BS |22 ) + OR(04,0°)  (3)

where
R(¢a7 ¢C) = ||¢a _¢(a)||12-11 Q) + ||¢C _¢8||?11 Q) + Ba|H(¢a) |BV(§2) + BC|H(¢C) |BV(Q)

@ o > 0 plays the role of a regularization parameter and ; are scaling
facor.

e The H'(Q) terms act as a control on the size of the norm of the level set
function (key role to prove uniqueness of the existence of ¢').

@ The BV(Q)-seminorm terms penalize the length of the Hausdorff
measure of the boundary of the sets l"gl.



Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Inverse Problem

Continuous operator

For each € > 0, the smooth approximations

| l41t/e for t € [—€,0]
® He(t) ~—{ H(t) fg: t € R\ [—¢,0]

® Pe(0%,¢°) 1= (a®+(a' —a®)He(¢), ¢ + (¢! = ?)He(¢°))



Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Inverse Problem

The concept of generalized minimizers

o Avector (z',2%,0%,¢°) € [L(Q)]* x [H' (Q)]* is called admissible if
there exist sequences {0 } of H'-functions and a sequence {g} € R™
converging to zero such that

klgg||¢i—¢’||y(g):0 and klgl;lollHSk(q)i)_ZJHLl(Q):O'



Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Inverse Problem

The concept of generalized minimizers

o Avector (z',2%,0%,¢°) € [L(Q)]* x [H' (Q)]* is called admissible if
there exist sequences {0 } of H'-functions and a sequence {g} € R™
converging to zero such that

klgg||¢i—¢’||y(g):0 and klgl;lollHSk(q)i)_ZJHLl(Q):O'

@ A generalized minimizer of the functional %, in (3) is any admissible
vector (z!,2%,0%,6¢) minimizing

Folz',22,0%,¢°) ZHF )=l |72 ) +op(2 22, 0%,09),

)
0 0('\2) = (@+(d' ~@), 2+ (! = )2),

o p(z!,2,0%,¢°) = inf {liminfi . X2 (B1He, (0))lsv + 07 — 00121 ) }
e



Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Inverse Problem

Convergence Analysis

Theorem (DC-L-T 2009)

@ [Well-posedness] Fo in (4) attains minimizers on the set of admissible vectors.




Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Inverse Problem

Convergence Analysis

Theorem (DC-L-T 2009)

© [Convergence for exact data] Assume that 2® = /. For every o > 0 denote by
(zb,72,0%,05) a minimizer of %,. Then, for every sequence of positive numbers
{0y} converging to zero there exists a subsequence, denoted again by {oy},
such that (zg, , 25, , 0%, , 05, ) is strongly convergent in [L'(Q)]* x [L*(Q)]*.
Moreover, the limit is a solution of (1).




Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Inverse Problem

Convergence Analysis

Theorem (DC

@ [Convergence for noisy data] Let o = o.(8) be a function satisfying limg_,
a(8) = 0 and limg_,; 8%a(8) ! = 0. Moreover, let {5;} be a sequence of
positive numbers converging to zero and {th} be corresponding noisy data.
Then, there exists a subsequence, denoted again by {0}, and a sequence
{oy := au(8) } such that (zg, 25, , 0%, , 05, ) converges in [L!(Q)]* x [L*(Q)]* to
a solution of (2).




Level set approach

Inverse Problem N
Level set approach: convergence analysis

Level set approach: numerical realization

Convergence Analysis

Generalized Meyers’ Theorem

Let Q C R", n € {2,3,4}, be a connected bounded open set with a Lipschitz
boundary I" and let (a,c) € D(F). Then, there exists a real number py; > 2
(depending only on Q, a,a,c and ¢) such that the following condition hold for every
pPE (27pM)

If g € W!=1/94(T") where q := p/(p — 1), then the unique solution u of (DP)
belongs to W7 (Q).




Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Inverse Problem

Level set regularization: numerical realization.

@ In this case, the energy functional is:

M
Fae(0.0°) = Y [F(Pe(@,0)) — K2y + Re(97,0°)

m=1

where

Re(4.0°) = [He (0 ouce) + [He (0 vy + 109 — 0611 gy +10° 0511
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Level set approach: convergence analysis
Level set approach: numerical realization

Inverse Problem

Level set regularization: numerical realization.

@ Given a, € > 0and ¢} € H', the functional 7o attains a minimizer on [H'(Q)]%.
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Level set approach: convergence analysis
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Inverse Problem

Level set regularization: numerical realization.

@ Given a, € > 0and ¢} € H', the functional 7o attains a minimizer on [H'(Q)]%.

© Let o be given. For each € > 0 denote by (¢¢ ,,0¢ ¢,) @ minimizer of %o . There
exists a sequence of positive numbers {g;} converging to zero such that
(0¢, a» 95,.o.) converges strongly in [L?(Q)]? and the limit is a generalized
minimizer of F.




Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Inverse Problem

Level set regularization: numerical realization.

@ Given a, € > 0and ¢} € H', the functional 7o attains a minimizer on [H'(Q)]%.

© Let o be given. For each € > 0 denote by (¢¢ ,,0¢ ¢,) @ minimizer of %o . There
exists a sequence of positive numbers {g;} converging to zero such that
(0¢, a» 95,.o.) converges strongly in [L?(Q)]? and the limit is a generalized
minimizer of F.

o Differently from %, the minimizers of %4 ¢ can be computed.

@ Derive the first order optimality condition for a minimizer of ..



Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Inverse Problem

Level set regularization: numerical realization.

@ First order optimality condition: ai;’_‘f (h)=0 VYheH'(Q).

a(A-1)(0 0 = Lia(0".¢°) inQ
5@/ —0p)= 0 onT.

M a C
L0709 = Wﬁ%w%2<ﬁﬂﬁww

m=1

o, [ o))

fmmww>@ﬂ




Level set approach
Level set approach: convergence analysis
Level set approach: numerical realization

Inverse Problem

lterative regularization algorithm

1. Evaluate the residual

T = Fn(Pe(07,07)) — m—ukm‘ — hp, m=1,...,M.

2. Evaluate (W) and (W) m=1,..

3. Calculate 5(1)}( solutions of the BVP

(A—1)3¢, = Li o (0f,05) inQ
a&p]‘ =0 onTl.

4. Update the level set functions

01 = 0 +80¢  and O = O +80;



Identification of the absorption
Identification of the difussion

Numerical Examples Identification of absorption and diffusion coefficients

Numerical Examples

“(x) = 10, inside blue inclusion () = 10, inside red inclusion
@)= 1, elsewhere » CWE 1, elsewhere.

Four (M = 4) distinct functions g,,, each one supported at each side of I'.
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Numerical Examples

Identification of the absorption coefficient ¢ (x)

a* is assumed to be exactly known

lle'=c,

Diftrance ¢ - ¢, — Horaton k -0 Diftrance < ¢, — Horation k - 2500
1
o ors ors /
g o
s, > 05 > o
04 |
025 025
02 '
0 500 7000 7500 2000 2500 0% o5 o7 23 05 o7
Horation k X X
i med to b k at=1
a” is assumed to be unknown: a™ =
e =g, . .
Y, Diftrence ¢ ¢, - Heraton k - 0 Diftrence ¢ - ¢, — Heration k - 2500
1
075 075
08
2 o0s
s, > 05 > os
04 ’ 9
025 025
02 ‘
500 00 2000 w00 % 0z o5 075 i % 3 05 075 i

1000 [E:
Heration X X




Identification of the absorption
Identification of the difussion
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umerical Examples Identification of absorption and diffusion coefficients

Identification of the diffusion coefficient a(x)

c* is assumed to be exactly known
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Split strategy

@ Some facts to take into account:

@ The method for identifying ¢* performs well, even if a good approximation
of a* is not known.

@ On the other hand, the method may generate a sequence a* that does not
approximate a* if [|ck — ¢*|| is large.

© For simultaneous identification of (a*,c*) we observed that the error
|k — ¢*|| decreases from the very first iteration. However, the error
[[a* —a*|| only starts improving when ||k — ¢*|| is sufficiently small.
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Numerical Examples Identification of absorption and diffusion coefficients

Split strategy

@ Some facts to take into account:
@ The method for identifying ¢* performs well, even if a good approximation
of a* is not known.
@ On the other hand, the method may generate a sequence a* that does not
approximate a* if [|ck — ¢*|| is large.
© For simultaneous identification of (a*,c*) we observed that the error
|k — ¢*|| decreases from the very first iteration. However, the error
[[a* —a*|| only starts improving when ||k — ¢*|| is sufficiently small.
@ Split strategy:
@ Setd*(x) =1 and iterate w.r.t. ¢ until the sequenece c* stagnates
(Ilck = c*|| is small).
@ Setd(x) = d" and iterate w.r.t. ¢* until the sequenece a* stagnates
(la* —a*|| is small).
@ Each iteration step consist in one iteration w.r.t. ¥ and two iterations w.r.t

a~.
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Numerical Examples

Identification of both coefficients: example 1

Diffusion coeficcient a(x)
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Identification of the absorption

Identification of the difussion
Identification of absorption and diffusion coefficients

|dentification of both coefficients: example 2

Diffusion coeficcient a(x)

Lyeror

Lyeror

Diflerence '~ a, — Heraon k=0 Difeence & - 3, — Heration k = 750 Diflerence '~ 3, — Heration k= 1500
AN
Absorption coefficient ¢(x)
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| ot ﬂ




Conclusion

Some comments

@ We developed a level set approach for simultaneous reconstruction of
the piecewise constant coefficients (a, ¢) from a finite set of boundary
measurements of optical tomography in the diffusive regime.

@ We proved that the forward map F is continuous in the L!-topology.
Hence, by previous results, the presented level set approach is a
regularization method.



Conclusion

Some comments

@ We developed a level set approach for simultaneous reconstruction of
the piecewise constant coefficients (a, ¢) from a finite set of boundary
measurements of optical tomography in the diffusive regime.

@ We proved that the forward map F is continuous in the L!-topology.
Hence, by previous results, the presented level set approach is a
regularization method.

@ We proposed a split strategy for the simultaneous identification. Such
strategy produces very good results when a* and ¢* have no crossing
supports.

@ The strategy reduces significatively the numerical computational time.



i Muchas gracias !
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