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OUTLINE 

• Computational metamaterial design 

• Microscale analysis 

• Multiscale problem as a macroscopic one with inhomogeneous material 

• Macroscopic thermo-mechanical response as a function of microstructure 

• Material design as an optimization problem 

• Applications: 

• Optimization of the mechanical response under thermal loads 

• Optimization of the thermal response using free material optimization (FMO) 

• Heat flux manipulation 

• Design of easy-to-make devices using discrete material optimization (DMO) 

• Design of easiest-to-make devices using topology optimization 

• Advantages of computational metamaterial design 

• Perspectives 
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METAMATERIAL DESIGN 

• MATERIAL DESIGN: to modify the microstructure of the material in a 
macroscopic piece in order to obtain an optimal response of the 
piece  

 

• METAMATERIAL: the so-designed material, usually having 
extraordinary effective properties: 

• optical or acoustical camouflage /invisibility  

• negative Poisson ratio 

• negative thermal conductivity, thermal camouflage, etc. 
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COMPUTATIONAL METAMATERIAL DESIGN 

• Computational Metamaterial Design (CMMD) involves the 
computational solution of a series of multiscale problems for 
changing microstructure 

 

 

 

 

 

 until finding the optimal macroscopic response 
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MACROSCOPIC BODY WITH VARIABLE 
MICROSTRUCTURE 
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QUANTITATIVELY CHARACTERIZED 
MICROSTRUCTURE 

Ex.: Narayana & 
Sato’s heat flux 
inverter (PRL 
2012) 
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MICROSCALE ANALYSIS 
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Microscale 
analysis 

 
 
 
 
 
 
 

• Goal: determination of the effective properties as analytical functions 
of the microparameters 

 

MICROSCALE ANALYSIS 
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ANALYTICAL MICROSCALE ANALYSIS: 
LAMINATE 
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EXPERIMENTAL+NUMERICAL MICROSCALE 
ANALYSIS: PAPER 

• Using upscaling techniques, discrete element 
simulations and X-ray microtomography of 
the geometry of wood fibers and their bonds 
and the architecture of the fibrous network, 
Marulier (PhD thesis 2013) determined the 
homogenized elastic moduli: 
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NUMERICAL MICROSCALE ANALYSIS: 
CANCELLOUS BONE 

• Using FEM for a geometrically 
parameterized cell, Kowalczyk (2006) 
determined the homogenized elastic 
moduli: 
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NUMERICAL MICROSCALE ANALYSIS: SOLID 
WITH INCLUSIONS 

 
GRIDS FROM FEM  
PARAMETRIC 
ANALYSIS 

POLYNOMIAL  
RESPONSE 
SURFACES 
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* Fachinotti, Toro, Sánchez & Huespe,      
 IJSS 2015 
 



REDUCTION OF THE MULTISCALE PROBLEM 

 

13 



MACROSCOPIC THERMO-MECHANICAL 
RESPONSE AS A FUNCTION OF 

MICROSTRUCTURE 
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THERMOMECHANICAL RESPONSE AS A 
FUNCTION OF MICROSTRUCTURE 

15 



MATERIAL DESIGN AS AN OPTIMIZATION 
PROBLEM 
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MATERIAL DESIGN FOR OPTIMAL 
MACROSCOPIC MECHANICAL RESPONSE 

UNDER THERMAL LOADS 
 

with  
S. Toro, P. Sánchez & A. Huespe (CIMEC) 
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STEEL 
E=2e11Pa  
n=0.3 
a=1e-5/°C 
k=36.5W/(m°C) 

COPPER 
E=1.2e11Pa 
n=0.34 
a=1.7e-5/°C 
k=384W/(m°C) 

THERMAL DEFLECTION OF A CANTILEVER 
PLATE 

3 m 

0.3 m 

T=50°C 

T=0°C 

18 



uy 

OPTIMIZING THE COMPLIANCE/STIFFNESS 

Copper 

Steel 

Periodic RVE 
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EFFECTIVE PROPERTIES AS FUNCTIONS OF 
MICROSTRUCTURE 

Grids from 
FEM 
microscale  
analysis 

Polynomial 
response 
surfaces 
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MAXIMAL COMPLIANCE:  
VERTICAL DISPLACEMENTS 

Copper beam 

uy = 1.361 uy,copper 

Optimal beam 
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MAXIMAL COMPLIANCE:  
OPTIMAL MATERIAL DISTRIBUTION 

Thickness of the vertical layers 

(100% steel) 

(100% copper) 

Thickness of the horizontal layers 
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MINIMAL COMPLIANCE:  
VERTICAL DISPLACEMENTS 

uy = 0.527 uy,steel 

Steel beam Optimal beam 
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MINIMAL COMPLIANCE:  
OPTIMAL MATERIAL DISTRIBUTION 

Thickness of the vertical layers 

(100% steel) 

(100% copper) 

Thickness of the horizontal layers 

24 



MATERIAL DESIGN FOR OPTIMAL 
MACROSCOPIC THERMAL RESPONSE USING 

FREE MATERIAL OPTIMIZATION (FMO) 
 

with S. Giusti (GIDMA) 
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FREE MATERIAL OPTIMIZATION OF THE 
THERMAL RESPONSE 
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INITIAL TEMPERATURE DISTRIBUTION 
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OPTIMAL DISTRIBUTIONS OF CONDUCTIVITIES 

kxx 

kyy 
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TEMPERATURE FOR THE OPTIMAL SOLUTION 
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DETERMINATION OF THE MICROSTRUCTURE 
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TOPOLOGY OPTIMIZATION AT THE MICROSCALE 
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COMPUTATIONAL METAMATERIAL DESIGN 
FOR HEAT FLUX MANIPULATION 

 
with 

I. Peralta, A. Ciarbonetti (CIMEC) 
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MANIPULATING THE HEAT FLUX 

Prescribed 
boundary 
temperature 

Prescribed 
boundary flux 
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HEAT FLUX MANIPULATION AS AN 
OPTIMIZATION PROBLEM 
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DESIGN OF A HEAT FLUX CONCENTRATION 
AND CLOAKING DEVICE 
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HEAT FLUX CONCENTRATION AND CLOAKING: 
OPTIMAL METAMATERIAL DISTRIBUTION 

Fraction of copper Fraction of PDMS Orientation 
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HEAT FLUX CONCENTRATION AND CLOAKING: 
OPTIMAL CONDUCTIVITY DISTRIBUTION 
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HEAT FLUX CONCENTRATION AND CLOAKING: 
OPTIMAL TEMPERATURE DISTRIBUTION 

* Peralta, Fachinotti & Ciarbonetti, Scientific Reports 2017 
(http://www.nature.com/articles/srep40591) 
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EASY-TO-MAKE HEAT FLUX MANIPULATING 
DEVICES USING DISCRETE MATERIAL 

OPTIMIZATION (DMO) 

 

with 

I. Peralta, A. Ciarbonetti (CIMEC) 
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MULTIPHASE TOPOLOGY OPTIMIZATION 
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DISCRETE MATERIAL OPTIMIZATION 
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DESIGN OF A HEAT FLUX CONCENTRATION 
AND CLOAKING DEVICE USING DMO 
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HEAT FLUX CONCENTRATION AND CLOAKING 
USING DMO:  
OPTIMAL METAMATERIAL DISTRIBUTION 
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HEAT FLUX CONCENTRATION AND CLOAKING 
USING DMO:  
OPTIMAL TEMPERATURE DISTRIBUTION 
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EASIEST-TO-MAKE HEAT FLUX MANIPULATING 
DEVICES USING TOPOLOGY OPTIMIZATION 

 

with 

A. Ciarbonetti, I. Peralta (CIMEC),               

I. Rintoul (INTEC)  
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TOPOLOGY OPTIMIZATION 
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DESIGN OF HEAT FLUX INVERTER USING  
TOPOLOGICAL OPTIMIZATION 
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HEAT FLUX INVERTER:  
TOPOLOGY OPTIMIZATION SOLUTION 
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HEAT FLUX INVERTER:  
BLACK AND WHITE FILTERING 

• For manufacturability, regions with intermediate material fractions 
(“grey zones”) must be avoided 

• Black and white filters (Sigmund 2007) serve to this end 
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HEAT FLUX INVERTER:  
TOPOLOGY OPTIMIZATION SOLUTION 
+ BLACK AND WHITE FILTERING 

50 



HEAT FLUX INVERTER:  
TOPOLOGY OPTIMIZATION WITH AND 
WITHOUT BLACK AND WHITE FILTERING 
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WITHOUT B&W FILTER WITH B&W FILTER 



HEAT FLUX INVERTER:  
EXPERIMENTAL VALIDATION 
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Computationally 
designed device 



HEAT FLUX INVERTER:  
EXPERIMENTAL VALIDATION 
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HEAT FLUX INVERTER:  
EXPERIMENTAL VALIDATION 
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HEAT FLUX INVERTER:  
COMPARISON WITH NARAYANA AND SATO´S 
INVERTER 

55 
S. Narayana & Y. Sato, “Heat Flux Manipulation with Engineered 
Thermal Materials”, Physical Review Letters 2012 



• Narayana and Sato’s device, designed using the transformation-
based aproach inherited from electromagnetism,  has 96 PMMA-
copper laminate arms to invert the flux coming from every where 

• The current device, designed using the optimization-based 
approach, has 2 copper arms to invert the given heat flux 

• Narayana and Sato’s device also performs cloaking as a collateral 
effect of its transformation-based design 

• The current device doesn’t perform cloaking (it was not required) 

 better accomplishment of the inversion task 

HEAT FLUX INVERTER:  
COMPARISON WITH NARAYANA AND SATO´S 
INVERTER 
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• The optimization-based design (OBD) gives you the material distribution (inducing 
an adequate conductivity distribution) to accomplish a given task 

• The transformation-based design (TBD) gives you a required anisotropic 
conductivity field, and then you have to manage to achieve it 

• OBD can be applied to arbitrary tasks, geometries and boundary conditions 

• TBD has not been (can’t be?) applied to arbitrary tasks, geometries and 
boundary conditions 

• OBD gives you the optimal device to accomplish the given task 

• TBD gives you the device to accomplish the given task + cloaking  

  overdimensioning 

  poorer accomplishment of the given task 

 

 

 

ADVANTAGES OF THE OPTIMIZATION-BASED 
DESIGN 
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PERSPECTIVES 

• Robustness 

• instabilities 

• grey zones 

• convergence 

• 3D 

• Applications 

• Isolation: to deviate the heat flux from the zones where it is undesired, to 
drive it to somewhere where it maybe useful 

• Optimization of Austempered Ductile Iron (with B. Tourn) 

• Mechanical properties depend on the thermal history 

• Topology and heat treatment optimization to make a macroscopic 
piece have a given mechanical response  

• Metamaterials for wind turbine blades (with A. Albanesi) 

• Fabrication, patents 
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