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Continuous Problem

ignvirgelc_eff Consider a linear, elliptic PDE over a polygonal, bounded domain Q2 C R?
bt Fifi

Efements (d e N)

Lu=f in, and some boundary conditions on 90X

in variational formulation:

Problem ueV: Blu,v] = (f, v) Yv eV, (P)
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Continuous Problem

Consider a linear, elliptic PDE over a polygonal, bounded domain Q C R?
(deN)

Lu=f in, and some boundary conditions on 90X
in variational formulation:
ueV: Blu,v] = (f, v) Yv eV, (P)

where
V is an Hilbert space, for instance Hg (), H'(Q)/R,
H(Q;RY) x L2(Q)/R, Ho(div;R?), Ho(curl; R?);
f € V* an element of the dual space,
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Lu=f in, and some boundary conditions on 90X

in variational formulation:

Continuous

Problem ueV: Blu,v] = (f, v) Yv eV, (P)

where
V is an Hilbert space, for instance Hg (), H'(Q)/R,
H(Q;RY) x L2(Q)/R, Ho(div;R?), Ho(curl; R?);
f € V* an element of the dual space,
B:V xV — Ris a continuous bilinear form that satisfies an inf-sup

condition:

1Blo, w]| < C*[Jvllv [wllv  Yv,w eV,

inf sup %
vevwev |[v]lv|lwllv

Yw e V\ {0} FveV: Blv,w] # 0.

=c. >0,
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Existence and Uniqueness [Netas '62]

Theorem (Existence and Uniqueness). Problem (P) has for any f € V*
a unique solution u € V if and only if the bilinear form 5 is continuous
and satisfies the inf-sup condition

Blv, w]

. Blv, w] :
inf sup ———— = inf sup ———— = ¢, > 0.
vevwev [VIVIwllv  wevvev [vllviwlly

Moreover
lullv < e[| £llv=-



[
Adaptive Finite
Elements

K.G. Siebert

Continuous

Problem

Existence and Uniqueness [Netas '62]

Theorem (Existence and Uniqueness). Problem (P) has for any f € V*
a unique solution u € V if and only if the bilinear form 5 is continuous
and satisfies the inf-sup condition

inf sup M = inf supM =cs > 0.
vevwev [vllviwllv  wevvev [lvllv]lw|lv
Moreover
lullv < e[| £llv=-
Remarks:

Continuity of B on V x V is inherited to all subspaces of V with the
same constant C™.
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Continuous

Problem

Existence and Uniqueness [Netas '62]

Theorem (Existence and Uniqueness). Problem (P) has for any f € V*
a unique solution u € V if and only if the bilinear form 5 is continuous
and satisfies the inf-sup condition

inf sup M = inf supM =cs > 0.
vevwev [vllviwllv  wevvev [lvllv]lw|lv
Moreover
lullv < e[| £llv=-
Remarks:

Continuity of B on V x V is inherited to all subspaces of V with the
same constant C™.

Existence and uniqueness for coercive B, i.e.,
Blv,o] > eol} VeV,

follows from Lax-Milgram Theorem ['54]. Coercivity implies the inf-sup
and is inherited to any subspace of V with the same constant c..
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Continuous
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Existence and Uniqueness [Netas '62]

Theorem (Existence and Uniqueness). Problem (P) has for any f € V*
a unique solution u € V if and only if the bilinear form 5 is continuous
and satisfies the inf-sup condition

inf sup M = inf supM =cs > 0.
vevwev [vllviwllv  wevvev [lvllv]lw|lv
Moreover
lullv < e[| £llv=-
Remarks:

Continuity of B on V x V is inherited to all subspaces of V with the
same constant C™.

Existence and uniqueness for coercive B, i.e.,
Blv,o] > eol} VeV,

follows from Lax-Milgram Theorem ['54]. Coercivity implies the inf-sup
and is inherited to any subspace of V with the same constant c..

The inf-sup condition is more general than coercivity but, in general,
the inf-sup condition is not valid on subspaces of V!



Example: Linear Elliptic PD

Convergence of

Adaptve Firite Poisson problem: For given f € L(2) solve for u such that
lements
—Au=f inQQ,
u=0 on of.
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Example: Linear Elliptic PDE

Convergence of

Adaptve Firite Poisson problem: For given f € L(2) solve for u such that
lements
—Au=f inQQ,
u=0 on of.
Continuous Here, V := Hg(Q), || - lv = |l - llzr1 (0, and for u,v € V set

Problem

Blu,v] := / Vu - Voudz,
o

(f, v) ::/vadx.




Example: Linear Elliptic PDE

Convergence of

Adaptive Finie Poisson problem: For given f € L(2) solve for u such that
lements
K.G. Siebert —Au:f in Q’
u=0 on of.
Continuous Here, V:= H5(Q), || |lv =" |1 (). and for u,v € V set

Problem

Blu,v] := / Vu - Vudz,
Q

(f, v) ::/vadx.

B is continuous and coercive, i.e.,
2 1
Blv,v] > eu||v]|71(q) Yo € Hy (),
thanks to the Poincaré-Friedrichs inequality

[0l o) < ClVOllLa@) Yo € Ho(Q).




Example: Linear Saddle-Point Problem

Convergence of

i (Fnfie Stokes problem: For given f € L2(;R?) solve for velocity u and pressure

Elements p such that
—Au+Vp=f in{Q,

V-u=0 inQQ,
u=0 on9dN.

Continuous

Problem
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Example: Linear Saddle-Point Problem

Stokes problem: For given f € Lo(Q;R?) solve for velocity  and pressure

p such that
—Au+Vp=f inQ,

V-u=0 inQQ,
u=0 on9dN.

Here, V = H (4 R?) x L2(Q)/R and for u = (u,p),v = (v,q) € V set
Blu, q] ::/Vu:Vvdx—/pV-vdx—/V~uqu,
Q Q Q

(f, v) :Z/Qf-'vdx.

B is continuous and fulfills the inf-sup condition (LBB condition) thanks to
Poincaré-Friedrichs and solvability of the divergence equation with respect
to the norm

[0l = 11w, )IIF = ol @mey + lallZaco)-



Conforming Discretization with Adaptive Finite Elements
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Let 7o be an initial, conforming triangulation of € and let 7 be some
conforming and shape-regular refinement of 7y:

Discretization

To T




Conforming Discretization with Adaptive Finite Elements
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Let 7o be an initial, conforming triangulation of € and let 7 be some
K.G. Siebert conforming and shape-regular refinement of 7y:

Discretization

To T

Let V(7)) C V be piecewise polynomial finite element space over 7
satisfying the single discrete inf-sup condition

. B[V, W]
inf sup ———— =c¢(7) >0
L A T A
or
inf  sup BV, W] _ (7)) >0.

wevr) vevir IVIVIWIy




Remarks on the Discrete Inf-Sup Condition

Convergence of

Adaptive Finite The first discrete inf-sup condition implies injectivity of the discrete
Elements ot . . . . .
operator, whence it is also surjective, and thus, the adjoint operator is
injective. This is characterized by the second discrete inf-sup.

Discretization
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Discretization

Remarks on the Discrete Inf-Sup Condition

The first discrete inf-sup condition implies injectivity of the discrete
operator, whence it is also surjective, and thus, the adjoint operator is
injective. This is characterized by the second discrete inf-sup.

Since V(7)) C V, the continuous inf-sup condition implies for any
V € V(7) the existence of a w € V such that
BV,w
IVIkvllwllv =

But in general, w € V(7) and thus the continuous inf-sup does not
imply the discrete one.



Remarks on the Discrete Inf-Sup Condition

Convergence of

Ak Firfie The first discrete inf-sup condition implies injectivity of the discrete
Elements ot . . . . .
operator, whence it is also surjective, and thus, the adjoint operator is
injective. This is characterized by the second discrete inf-sup.

K.G. Siebert

Since V(7)) C V, the continuous inf-sup condition implies for any
V € V(7) the existence of a w € V such that

Discretization B[V7 w] c
L >,
VIlwllwllv

But in general, w € V(7) and thus the continuous inf-sup does not
imply the discrete one.

The continuous inf-sup condition implies the discrete one iff there
exists a continuous operator IT: V — V(7') such that

B[V, w] = B[V, Tw] VYV eV(T) and w € V.

Furthermore, ¢(7) > ¢, is independent of 7 iff there exists a C' > 0
independent of 7 s.th.

IMwllv < Cllw|lv  Yw € V.




Discrete Problem

Convergence of

Adaptive Finite The discrete problem reads:

Elements

UeV(T): BUV]=(f,V) ¥V eV(T).

Since V(7)) C V, the bilinear form B is continuous. The discrete inf-sup
condition implies existence and uniqueness of the discrete solution [Ne&as].

Discretization
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Discretization

Discrete Problem

The discrete problem reads:

UeV(T): BlU, V] = (f, V) YV e V(7).
Since V(7)) C V, the bilinear form B is continuous. The discrete inf-sup
condition implies existence and uniqueness of the discrete solution [Ne&as].

Properties of the discrete solution:
A priori bound
—1
NUllv < e(T) " |If[lv~

Galerkin orthogonality
BlU, —u,V]=0 YV e V(T)

implies the quasi best approximation property [Babuska, '71]

*

C
_ < =7 3
1T = ullv < o(T) Vég(ffr) I

V — u||v.

For coercive forms B this is Cea's Lemma [Cea '64].

Uniform estimates only for stable discretizations with ¢(7) > ¢, > 0.
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The Adaptive Loop

Starting with the initial grid 7o we use the standard adaptive iteration:
SOLVE — ESTIMATE — MARK — REFINE

for computing a sequence {7, Uy }r>0 of grids and discrete solutions.

m SOLVE: computes the Galerkin approximation Uy € Vi to u:

exact integration;
exact numerical algebra;

m ESTIMATE: computes error indicators {Ex(T) }rey;
B MARK: selects elements in 7, for refinement;

m REFINE: refines all marked elements and outputs a new grid.
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Method

The Adaptive Loop

Starting with the initial grid 7o we use the standard adaptive iteration:
SOLVE — ESTIMATE — MARK — REFINE

for computing a sequence {7, Uy }r>0 of grids and discrete solutions.

m SOLVE: computes the Galerkin approximation Uy € Vi to u:

exact integration;
exact numerical algebra;

m ESTIMATE: computes error indicators {Ex(T) }rey;
B MARK: selects elements in 7, for refinement;

m REFINE: refines all marked elements and outputs a new grid.

It is not clear, that the discrete solution improves!



Convergence of
Adaptive Finite
Elements

Adaptive

Method

Example of Adaptive Approximation: Interior Layer

We consider the adaptive approximation to a solution of the Poisson
problem with the following features:

m rough ride hand side;
m rough boundary data.

This results in a solution with steep gradients:




Adaptive Iterations 0 and 1
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Adaptive lterations 2 and 3

Adaptive iteration 2

Adaptive iteration 3
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Adaptive lterations 6 and 7
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Adaptive lterations 8 and 9
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Adaptive Iterations 10 and 11
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The Module ESTIMATE

Given {7k, Uk}, compute an estimator for the true error ||Uy — ullv in
terms of the discrete solution and given data.

A posteriori error estimators are split into local indicators & (1) on
elements T' € 7; and can be summed over subsets Sy C 7

es = (Y &),

TEeSy
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The Module ESTIMATE

Given {7k, Uk}, compute an estimator for the true error ||Uy — ullv in
terms of the discrete solution and given data.

A posteriori error estimators are split into local indicators & (1) on
elements T' € 7; and can be summed over subsets S, C 7

es = (Y &),

TEeSy

Properties of the estimator: There exist constants 0 < ¢1 < c2 < 00, solely
depending on the shape-regularity of 7, such that

a||Us —ully < EX(Th) < c2(|Ux — ully +osci(77€)).
The left inequality is called upper bound the right one lower bound.

m The upper bound only holds globally.

m The lower bound also holds in a local variant:
EN(T) < e2(Uk = ullFuiy (1)) + oscr (Ue(T))?)

m The oscillation term oscy(7x) is usually of higher order.
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Example: The Residual Estimator and Oscillation

Denote by ht € Lo (f2) the piecewise constant mesh-size function with

hrir = |T|"* = diam(T), Te€T.

Poisson problem: —Au = f in ©, u =0 on 9Q
E7(T) := |hr (=AU = Nl + 107 [VUD |2z 0mne)

osc7(T) := |lhr (fr — f)lIL,m)-



Example: The Residual Estimator and Oscillation

Convergen: f . . . . .
Agap:i\;g:FCizi?e Denote by ht € Lo (f2) the piecewise constant mesh-size function with

Elements

hrir = |7 ~ diam(T),  TeT.

Poisson problem: —Au = f in ©, u =0 on 9Q
Adaptive

Methed EH(T) = |lht (~AU = Pl + 1h7* [VU] |21 c0r00)

osc7(T) := |lhr (fr — f)lIL,m)-

Stokes problem: —Au + Vp = f and —divu =0 in 2, u = 0 on 92
EH(T) = ||hr |-AU + VP — f| ||2L2(T) + Hh17/2 [VU] ||2L2(8Trm)
+[divU |11, (r)

osc7(T) := ||hr |f7 — fllZ.0m)
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The Module MARK

Select elements for refinement based on information provided by the
indicators {&x(T) }rez;, -

Popular marking strategies are motivated by the equidistribution of the
true error on an optimal grid [Babuska, Rheinboldt '78].
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The Module MARK

Select elements for refinement based on information provided by the
indicators {&x(T) }rez;, -

Popular marking strategies are motivated by the equidistribution of the
true error on an optimal grid [Babuska, Rheinboldt '78].

Equidistribution Strategy: Maximum Strategy:
Parameters TOL > 0, 6 € [0, 1] Parameter v € [0, 1]
Elimit 1= (9TOL/#’Z;€1/2 Elimit ==V ereaTXk Ex(T)

Set My, of marked elements is then defined as

My :={T € Tp | Ex(T) = Eiimit }-
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Method

The Module MARK

Select elements for refinement based on information provided by the
indicators {&x(T) }rez;, -

Popular marking strategies are motivated by the equidistribution of the
true error on an optimal grid [Babuska, Rheinboldt '78].

Equidistribution Strategy: Maximum Strategy:
Parameters TOL > 0, 6 € [0, 1] Parameter v € [0, 1]
Elimit 1= (9TOL/#’Z;€1/2 Elimit ==V ereaTXk Ex(T)

Set My, of marked elements is then defined as

My :={T € Tp | Ex(T) = Eiimit }-

Dérfler Marking invented for the first convergence proof ['96]: Given
parameter 6 € (0, 1] select My, C T such that

08 (T1) < Ex(Mp).
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The Module REFINE

Refine all marked elements in My, C 7 and create a conforming and
shape-regular triangulation 7;1 of Q.

MARK REFINE
— —

Denote by T the set of all possible refinements of an initial grid 7Zo.
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The Module REFINE

Refine all marked elements in My, C 7 and create a conforming and
shape-regular triangulation 7;1 of Q.

MARK REFINE
— —

Denote by T the set of all possible refinements of an initial grid 7Zo.

Using bisectional refinement yields the following properties:

Mesh-size of refined elements is strictly decreased: For the two
children T, T of any bisected element 7' € T we have |T;| = § |T],
i=1, 2.

Conformity is preserved and shape-regularity of any refinement 7 € T
solely depends on the shape-regularity of 75.

Any sequence 79,71, ...,7y,... of generated triangulations is nested
which implies nested spaces V(7o) C V(71) C ... V(Ti) C ...V for
piecewise polynomials.



Uniform Refinement implies Density

Convergence of . . .
A e Uniform refinement yields for a sequence {7x}r>0

Elements

e Jim A (T3) = 0,

which implies the following density property of the finite element spaces:

II-1lv

YoeV: lim min |[Vi—v]y=0 = Uvm) =v
k—oo Vi eVy,
k>0
ot Proof: Let W be a dense subspace of V and let II,: W — V(7}) be an

interpolation operator with

l[w = gwllv S hinax(Ze)llw]lw,

~

where ¢ > 0 depends on W and V(73). For instance, W = H?(Q),

V = H*(Q) and II; Lagrange interpolation operator with ¢ = 1.

Then for any v € V and given ¢ > 0 first choose w € W close to v and
then k large enough such that

[v—Tewllv < flv—wllv + [[w = Ixw|lv
S v = wlv + hfax(Te) [w]lv < e
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Convergence: Uniform vs. Adaptive Refinement

For uniform refinement the density of spaces in combination with
quasi-best approximation property and stability of the discretization
o(T)>c, >0

*

C .
Uk — ullv < — min [|[Vk —ullv—0
C, Vi €V

as k — oo, i.e., convergence.
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Density and

Convergence

Convergence: Uniform vs. Adaptive Refinement

For uniform refinement the density of spaces in combination with
quasi-best approximation property and stability of the discretization
o(T)>c, >0

*

C .
Uk — ullv < — min [|[Vk —ullv—0
c, Vi€V

as k — oo, i.e., convergence.

Adaptive refinement may not yield this density property, since it may
happen that

lim Amax(Zx) >0

k—o0

Hence, convergence Uj;, — u for k — oo is not clear, and can only be true,
if u can be approximated by functions V;, € V.

This hinges on properties of the modules

SOLVE, ESTIMATE, MARK, and REFINE.
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Assumptions and
MNS

Convergence of AFEM: Enforce Progress

Principal idea: “Travel” with the discrete solution and monitor the
improvement between two consecutive iterations:

Enforce a strict improvement when going from Uy, to Ug41!

MNS algorithm [Morin, Nochetto, S. '00] based on [Dérfler '96]:
m SOLVE: Restriction of problem class: selfadjoint elliptic problems;

m ESTIMATE: Reliable estimator with a discrete local lower bound;
needs also oscillation indicators;

m MARK: Dorfler marking for estimator and oscillation:
0Ek(T1) < E(My) and A osck(7r) < oscy(My);

m REFINE: Ensure that all marked elements and its direct neighbors are
sufficiently refined (interior node property):




Contraction Property of MNS

Convergence of

Adaptive Finite The interior node property gives a discrete lower bound for the error
Elements .
reduction ||Ux, — Ugt1||v:

1
U, — Uk+1||%2/ + OSC%(MI@) > aglz(Mk)

Assumptions and
MNS
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Assumptions and
MNS

Contraction Property of MNS

The interior node property gives a discrete lower bound for the error
reduction ||Ux, — Ugt1||v:

1
Uk = Uk |7 + osck (M) = —ER(M).
Assuming osci(7;) = 0, Dérfler marking and the upper bound give
1 1 c
Uk = Uksa[[§ > —-€R(M) 2 6% —EX(Ti) > 0° || Uk — ull?,
c2 Cc2 C2

i.e., the error reduction is a fixed portion of the error.



Contraction Property of MNS

Convergence of

Adaptive Finite The interior node property gives a discrete lower bound for the error
Elements .
reduction || Uy — Ug1]|v:

K.G. Siebert

1
|Ux = Urga [|¥ + osci (M) > a&f(Mk)-
Assuming osck(7;) = 0, Dérfler marking and the upper bound give
1 1 c
|Uk = Unia |} 2 —€2(My) > 6°—€2(T0) = 6° U — ull?,
c2 Cc2 C2

i.e., the error reduction is a fixed portion of the error.

Restriction to selfadjoint elliptic problems implies orthogonality of the
error in the energy norm:

[Uksr = ully = 10k = ullf = U = Ursa |-
which implies the contraction property

(&
Ui =l < (1= 622 ) 1Ux — ulld =: o [Ux — ulf.

<1
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Assumptions and
MNS

Contraction Result for Selfadjoint Problems

Including marking for oscillation when osci(7) #Z 0, one obtains

Theorem (Contraction of Total Error). There exists v > 0 and a < 1
s.th. MNS achieves

k41 = s +yosciia(Tur1) < a (|Ux = ull + 7y osci(Tr)).

[Mekchay, Nochetto '05] based on [Chen, Feng '04] and
[Morin, Nochetto, S. '00,’02,"03].
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Assumptions and
MNS

Contraction Result for Selfadjoint Problems

Including marking for oscillation when osci(7) #Z 0, one obtains

Theorem (Contraction of Total Error). There exists v > 0 and a < 1
s.th. MNS achieves

k41 = s +yosciia(Tur1) < a (|Ux = ull + 7y osci(Tr)).

[Mekchay, Nochetto '05] based on [Chen, Feng '04] and
[Morin, Nochetto, S. '00,’02,"03].
Extensions to other linear and nonlinear problems:

m Biansch, Morin & Nochetto; Carstensen & Hoppe;
Cascon, Nochetto & S., Chen, Holst & Xu, Becker & al.. ..

m Veeser; S. & Veeser; Carstensen; Diening & Kreuzer.
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Assumptions and
MNS

Contraction Result for Selfadjoint Problems

Including marking for oscillation when osci(7) #Z 0, one obtains

Theorem (Contraction of Total Error). There exists v > 0 and a < 1
s.th. MNS achieves

k41 = s +yosciia(Tur1) < a (|Ux = ull + 7y osci(Tr)).

[Mekchay, Nochetto '05] based on [Chen, Feng '04] and
[Morin, Nochetto, S. '00,’02,"03].

Extensions to other linear and nonlinear problems:

m Biansch, Morin & Nochetto; Carstensen & Hoppe;
Cascon, Nochetto & S., Chen, Holst & Xu, Becker & al.. ..

m Veeser; S. & Veeser; Carstensen; Diening & Kreuzer.

Recent result: The standard AFEM without interior node property and
without marking for oscillation yields foray >0and 0 < a < 1
U1 = ¥ + 7€k 11 (Trrr) < @ ([U = ullf +~ER(T)).

[Cascon, Kreuzer, Nochetto, & S. '08]
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Comments on
Decay Rate

Decay Rate for Selfadjoint Elliptic Problems in Terms of DOFs

For adaptive methods, the speed of convergence has to be measured in
terms of Degrees Of Freedom (DOFs):

U —ullv S (#Th — #To)"°

instead of

Uk — ullv

< p4

~

max

().
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Comments on
Decay Rate

Decay Rate for Selfadjoint Elliptic Problems in Terms of DOFs

For adaptive methods, the speed of convergence has to be measured in
terms of Degrees Of Freedom (DOFs):

1Ue —ullv S #Te —#70)"° instead of |Ux — ullv < Ahax(Zk)-

Based on a contraction property of AFEM for some suitable error notion,
for instance the total error for MNS, one can proof the following result:

Theorem (Optimality). The sequence of Ritz-Galerkin solutions {Uy } x>0
is quasi-optimal with respect to DOFs, i.e.,

- N® - T — 47T
goin min IV -ulv SN = U —ully S G~ #70)7,

where Ty = {7 € T | #7 — #7o < N} (plus decay of oscillation).

m Binev, Dahmen, DeVore '04, Stevenson '05: Modification of MNS
with additional coarsening;

m Stevenson '05: Nearly standard AFEM with an inner loop to reduce
oscillation;

m Cascon, Kreuzer, S., Nochetto '08: Standard AFEM.
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Open lIssues

A Lot of Open Questions

The above result cannot be (directly) generalized to problems that are not
related to an energy minimization:

m Diffusion-advection problems
m Saddle point problems

Also problems with other modifications

m Non-nested approximations

m Stabilized discretizations (SUPG, etc.)
m Other norms
[

It cannot be generalized to other marking strategies
® Maximum Strategy
m Equidistribution Strategy
[ T

For some nonlinear problems MNS does not even yield a contraction.

But: AFEM is working well for these problems.
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Convergence of AFEM: Observe Progress

Principal idea: Observe the full sequence {Uy}r>0 of discrete solutions as
they pass by:

Determine properties of the modules of AFEM which guarantee
convergence.

Module SOLVE:

Conforming and nested approximation:

VI eT: V(T)cV and VI<T.e€T: V(T)CV(T).
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Principal idea: Observe the full sequence {Uy}r>0 of discrete solutions as
they pass by:

K.G. Siebert

Determine properties of the modules of AFEM which guarantee
convergence.

Module SOLVE:

Conforming and nested approximation:

Basic Properties

orAFEM VIeT: V(T)cV and VTILT.€T: V(T)cCV(T).

Stable discretization of (P):

. B[V, W]
VI eT: inf sup —————— > ¢,
vevrywevr) IVIvIW]lv

with a fixed constant ¢, > 0 solely depending on the bilinear form B
and T, but not on a particular 7 € T.




Convergence of Galerkin Solutions [Morin, S., Veeser '08]

oy Lemma (Convergence of Galerkin Solutions). The assumptions on
aptive Finite

Elements SOLVE imply the existence of us, € V such that
Jim [[Ur = uoc|lv =0,
and u is the solution of
Uoo € Voo & Bltioo, Voo] = ([, Vo) Voo € Voo
with Voo = U, 5o Ve C V.
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Convergence of Galerkin Solutions [Morin, S., Veeser '08]
Lemma (Convergence of Galerkin Solutions). The assumptions on
SOLVE imply the existence of us, € V such that

Jim [[Ur = uoc|lv =0,
and uoo is the solution of
Uoo € Voo Bltioo, Voo] = ([, Vo) Yoo € Voo
with Voo = Uy Vi C V.

Steps of the proof:

The uniform inf-sup constant ¢, for Vi, implies the inf-sup condition
on Vo, with constant c,.
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on Vo, with constant c,.

Voo is a closed subspace of V, which implies existence and uniqueness
of uso by the Nelas theorem.



[
Adaptive Finite
Elements

K.G. Siebert

Basic Properties
of AFEM

Convergence of Galerkin Solutions [Morin, S., Veeser '08]

Lemma (Convergence of Galerkin Solutions). The assumptions on
SOLVE imply the existence of us, € V such that

Jim [[Ur = uoc|lv =0,
and u is the solution of
Uoo € Voo Bltioo, Voo] = ([, Vo) Yoo € Voo
with Voo = U, 5o Ve C V.

Steps of the proof:

The uniform inf-sup constant ¢, for Vi, implies the inf-sup condition
on Vo, with constant c,.

Voo is a closed subspace of V, which implies existence and uniqueness
of uso by the Nelas theorem.
Quasi-best approximation property of Uy with respect to u yields

*

C .
Uk — tuoollv < — inf |[Vk —uso|lv — 0
C, VheV(T)

by construction of V.
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i [[As = ho i = 0.
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Convergence of Mesh Size Functions [Morin, S., Veeser '08]
Lemma (Convergence of Mesh Size Functions). The sequence of
mesh-size functions {hi}r>0 C Loo(§2) defined as

hk|T:|T|l/d7 Teﬂ,
converges uniformly to some hoo € Loo (), i. €.,

i [[As = ho i = 0.

Steps of the proof:

For almost all z € Q, the sequence hy(z) is monotone decreasing and
bounded from below, which yields point wise convergence:

Ve e Q: lim hi(z) =: hoo(z).

k—oo



Convergence of Mesh Size Functions [Morin, S., Veeser '08]

Convergence of Lemma (Convergence of Mesh Size Functions). The sequence of
Adaptive Finite . K .
Elements mesh-size functions {hi}r>0 C Loo(§2) defined as

K.G. Siebert
hk|T:|T|l/d7 Teﬂ,
converges uniformly to some hoo € Loo (), i. €.,

i [[As = ho i = 0.

Steps of the proof:

Basic Properties

of AFEM . .
For almost all z € Q, the sequence hy(z) is monotone decreasing and
bounded from below, which yields point wise convergence:

Ve e Q: lim hi(z) =: hoo(z).

k—oo

The basic property of refinement by bisection implies: for any x € Q
there holds

either  hpy1(®) = he(x)  or  heia(z) <27V (a).

This can be utilized to conclude uniform convergence.




Limits and Splitting of the Grid

Comvarzames of Observations:
AR e '

Flements If it happens that Vo, =V, then uo, = u and we have convergence,
i.e.,

klim Uk — u|lv = 0.
Voo # Vis equivalent to hoo Z 0 in Q, i.e., hoo(x) > 0 for some
T € Q.

hoo(x) > 0 implies, that there exists K = K(x) and T' € Tk such
that x € T and T € 7, for all k > K.

Local Density
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Observations:

If it happens that Vo =V, then us = u and we have convergence,
i.e.,

klim Uk — ullv = 0.

Voo # Vis equivalent to hoo Z 0 in Q, i.e., hoo(x) > 0 for some
T € Q.

hoo(x) > 0 implies, that there exists K = K(x) and T' € Tk such
that x € T and T € 7, for all k > K.

This motivates the splitting of 7j:

;=7 and T):=T\T'.
>k

elements that are no longer refined, and elements that are refined at least
once.
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Local Density

Limits and Splitting of the Grid

Observations:

If it happens that Vo =V, then us = u and we have convergence,
i.e.,
klim Uk — ullv = 0.
Voo # Vis equivalent to hoo Z 0 in Q, i.e., hoo(x) > 0 for some
z € .
hoo(x) > 0 implies, that there exists K = K(x) and T' € Tk such
that x € T and T € 7, for all k > K.

This motivates the splitting of 7j:
;=7 and T):=T\T'.

>k
elements that are no longer refined, and elements that are refined at least

once.

Corollary. The splitting of 7; implies for the mesh size functions in Q(’Z}CO):

kh};c} ||h‘k||oo;Q(TkO) =0.
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where ¢ > 0 depends on regularity properties of W.
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Additional Assumption on Module SOLVE

Convergence of
Adaptive Finite . e
Elements Local approximability: Let W C V be a dense sub-space and let

K.G. Siebert I, € L(W,Vy) be a continuous, linear interpolation operator with
Vw € W, VT € Ty : lw — Tewllv(ry $ (1A llooirllwllwer),

where ¢ > 0 depends on regularity properties of W.

Lemma (Local Density). Convergence of the mesh size function in Q(7,°)
implies local density of the finite element spaces

Yo eV: klingo V/iglk |lv— Vk”V(Q(TkO)) =0.
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Additional Assumption on Module SOLVE

Local approximability: Let W C V be a dense sub-space and let
I, € L(W,Vy) be a continuous, linear interpolation operator with

Vwe W, VT € Ty : |lw —Tkwllvery S [Pk llooilwllwery,

where ¢ > 0 depends on regularity properties of W.

Lemma (Local Density). Convergence of the mesh size function in Q(7,°)
implies local density of the finite element spaces

Yo eV: klingo Vig/k |lv— Vk”V(Q(TkO)) =0.

Proof: Local density follows from local approximability:
flv— ka”vm("r,g)) <|v- w”V(Q(T,g)) + [lw — ka”wn(q'g))
< v = wllvie) + Cllhillooazo) lwllwie)-

Now, choose first w € W close to v and then k large to make the right
hand side small.
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Convergence of

Sl Observation: Obviously, ESTIMATE has to control the locally induced
error in Q(7,7) and MARK &, (7,1).

m ESTIMATE: Localized upper bound for the residual R(Us) € V*:

Yo eV: (RU), )| S D E(D)vllvs r)-
TET,

Stability of the indicators
VT €T : Er(T) S Ukllvay ) + 1Dz ()

for some D € Ly(2).
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Assumptions on Modules ESTIMATE, MARK, and REFINE

Observation: Obviously, ESTIMATE has to control the locally induced
error in Q(7,7) and MARK &, (7,1).

m ESTIMATE: Localized upper bound for the residual R(Us) € V*:

Yo eV: (RU), )| S D E(D)vllvs r)-
TET,

Stability of the indicators
VI €Ti:  &(T) S Ukllvan ) + 1Dll2a 1)
for some D € Ly(2).
m Module MARK: Control of maximal indicator
VI € T\ Mgz E(T) < g(max{&(T) | T € My}),

where g: R} — R{ is continuous in 0 with g(0) = 0.
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Assumptions on Modules ESTIMATE, MARK, and REFINE

Observation: Obviously, ESTIMATE has to control the locally induced
error in Q(7,7) and MARK &, (7,1).

m ESTIMATE: Localized upper bound for the residual R(Us) € V*:

Yo eV: (RU), )| S D E(D)vllvs r)-
TET,

Stability of the indicators
VT € Ty : E(T) S NUkllvanry) + 1Dll2i4, (1)
for some D € Ly(2).
m Module MARK: Control of maximal indicator
VT € T \ My, : Eu(T) < g(max{&(T) | T € My}),
where g: Rf — R{ is continuous in 0 with g(0) = 0.

m Module REFINE: Minimal refinement, i.e., all marked elements in
M. are bisected once.



Consequences

iZHVfrgeﬂ;eff Lemma. The estimator &, (7%) is uniformly bounded, i.e.,
bt Fifi

Elements 5k (,Z.].C) S A
and the maximal indicator vanishes in the limit:

klim max{&(T) | T € T} = 0.
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and the maximal indicator vanishes in the limit:
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Steps of the Proof: (with U (T') replaced by T', ...)
Stability of the discretization and the indicators yields

ENT) S Y NUklfry + 1Dl S 1Ukl) + IDll2e < A
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Consequences

Lemma. The estimator &, (7%) is uniformly bounded, i.e.,
En(T) < A
and the maximal indicator vanishes in the limit:

klim max{&(T) | T € T} = 0.

Steps of the Proof: (with U (T') replaced by T', ...)
Stability of the discretization and the indicators yields

ENT) S Y NUklfry + 1Dl S 1Ukl) + IDll2e < A
TET,

Let T € My s.th. Ex(Tk) = max{&x(T) | T € My }. Since
T € My, C T convergence of the mesh size function gives

d d
‘Tk| = Hthoo;Tk < ||hk||oo;Q<Tk0) — 0.
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Convergence

Consequences

Lemma. The estimator &, (7%) is uniformly bounded, i.e.,
En(T) < A
and the maximal indicator vanishes in the limit:

klim max{&(T) | T € T} = 0.

Steps of the Proof: (with U (T') replaced by T', ...)
Stability of the discretization and the indicators yields

ENT) S Y NUklfry + 1Dl S 1Ukl) + IDll2e < A
TET,

Let T € My s.th. Ex(Tk) = max{&x(T) | T € My }. Since
T € My, C T convergence of the mesh size function gives

d d
‘Tk| = Hthoo;Tk < ||hk||oo;Q<Tk0) — 0.
Stability of the indicators implies
Ee(T) S Uk = uosllviey + lluccllver) + I Dllzaz, — 0

by convergence of Galerkin solutions and continuity of norms with
respect to the Lebesgue measure. Now, assumption on marking yields
the claim.
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Convergence Without Lower Bound [S. '?7]

Theorem (Convergence of AFEM). The standard AFEM with a reliable
estimator achieves
klim HUk - UHV =0.

Sketch of the Proof: We already know the strong convergence Uy — uo in
V, and thus it remains to show u~ = u, for instance by proving

R(uss) =0 in V™.
Since W is dense in V it is sufficient to prove

lim (R(Uk), w) = (R(to), w) =0 Vw € W.

k—oo
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For k > £ it holds 7,* C 7,7 C Tx and (7)) = Q(Tx \ 7,1).
Galerkin orthogonality in combination with the upper bound gives for any

w € W with ||lw|lw =1

(R(Uk), w)| = (R(Uk), w— Mw)| S Y E(T)|[w — Mxwllvr)
TeT;,

Convergence
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Galerkin orthogonality in combination with the upper bound gives for any
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Convergence Without Lower Bound

For k > £ it holds 7,* C 7,7 C Tx and (7)) = Q(Tx \ 7,1).

Galerkin orthogonality in combination with the upper bound gives for any
w € W with ||w|lw =1

(R(Uk), w)| = (R(Uk), w— Mw)| S Y E(T)|[w — Mxwllvr)
TET,
S D &Mw - wllvery + Y E(T)|lw — Tew|lyr
TeT\T," TeT,

S Ex(Tw) |lw — Iew|ly(qz0y) + Ex(T")llw — Miw|lv(e)
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Convergence Without Lower Bound

For k > £ it holds 7,* C 7,7 C Tx and (7)) = Q(Tx \ 7,1).

Galerkin orthogonality in combination with the upper bound gives for any
w € W with ||w|lw =1

(R(Uk), w)| = (R(Uk), w— Mw)| S Y E(T)|[w — Mxwllvr)
TET,
S D &Mw - wllvery + Y E(T)|lw — Tew|lyr
TeT\T," TeT,

S Ex(Tw) |lw — Iew|ly(qz0y) + Ex(T")llw — Miw|lv(e)
S Ath”oo;Q(TZO) + E(TT)

< Al lsare) + E(T).
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Let € > 0 be arbitrary. Convergence of mesh size functions allows to first
choose ¢ s. th. .
q

Convergence of the maximal indicator then allows to choose k > £ s. th.

M <sHLHTV? vrert = &(T1) <

€
5

—~ 1\3\“’

In summary |(R(Ux), w)| S € for k sufficiently large, which implies
(R(Uk), w)y — 0 as k — oo.
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Convergence

Convergence Without Lower Bound

Let € > 0 be arbitrary. Convergence of mesh size functions allows to first
choose ¢ s. th. .
q

Convergence of the maximal indicator then allows to choose k > £ s. th.

M <sHLHTV? vrert = &(T1) <

€
5

—~ 1\3\“’

In summary |(R(Ux), w)| S € for k sufficiently large, which implies
(R(Uk), w)y — 0 as k — oo.

Remark: The assumption on marking can be weakened such that it
becomes essentially necessary:

klim max{&(T) |T € My} =0

= VTc £L>JO/TZ+ : Jlim £,(T) = 0.



Convergence of the Estimator

ignve.rger;:C_erf This result holds true for non-efficient estimators, even in the case
aptive Finite

Elements

Jlim £i(T2) > 0,

i.e., when allowing for overestimation.
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Convergence of the Estimator

This result holds true for non-efficient estimators, even in the case
lim gk(ﬂ) > O7
k—oo

i.e., when allowing for overestimation.

Progress of AFEM can only be monitored by observing £;(7x) and
efficiently stopping the iteration needs an efficient estimator:

E(T) S Uk — ullvag(ry) + osek(Un(T)), T € T
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i.e., when allowing for overestimation.

Progress of AFEM can only be monitored by observing £;(7x) and
efficiently stopping the iteration needs an efficient estimator:

E(T) S Uk — ullvag(ry) + osek(Un(T)), T € T

Theorem (Convergence of the Estimator). Under minimal assumptions
on osck, for an efficient estimator we obtain
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Convergence

Convergence of the Estimator

This result holds true for non-efficient estimators, even in the case
lim gk(ﬂ) > O7
k—oo

i.e., when allowing for overestimation.

Progress of AFEM can only be monitored by observing £;(7x) and
efficiently stopping the iteration needs an efficient estimator:

E(T) S Uk — ullvag(ry) + osek(Un(T)), T € T

Theorem (Convergence of the Estimator). Under minimal assumptions
on osck, for an efficient estimator we obtain

Sketch of the Proof: Split
E(Te) = (T \ T,") + EUT,")
S NUk = u”V(Q(’Tk\'Z’;’)) +osck (AT T,0)) + ERX(T) <«

by first choosing ¢ and then k > £ sufficiently large.
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Concluding Remarks

Comvarzames of
Adaptive Fini .
DA Property of a convergent adaptive method:

K.G. Siebert m the adaptive method must not overlook possible error sources;
m overestimation should not forestall convergence;
m efficiency of the estimator will be a key property for optimality.

Avoiding the discrete lower bound is highly advantageous:

m 4th order problems;
m stabilized discretizations.

Ranais Basic ideas can be generalized:

m nonlinear problems: convex minimization, optimal control, ...;
m non-nested spaces: red—green refinement, mini element for
Stokes, HCT and RHCT elements for 4th order problems, ...

Any practical adaptive method is converging:

m important message for practice (engineers, etc.);
m optimality has to be addressed for these methods!!!

Thank you for your attention!
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