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Main objects

© Hardy-Littlewood maximal operator

M = d
fla Z%Em/'f )ldy-

@ Calderén-Zygmund operators By a Calderédn-Zygmund operator we
mean a bounded operator on L%(R™), and whose distributional kernel
K coincides away from the diagonal z = y in R” x R™ with a
function K satisfying the size estimate

K (2, y)] <

|z y\”
|z — 2°
K (2,y) — K(z,9)| + | K(y, 2) = K(y,2)| < Te—ypre’

for some ¢ > 0, and if whenever 2|z — z| < |z — y|. So that

Tf(x) = . K(z,y)f(y)dy,

whenever f € C°(R") and f € C§°(R").
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We say that w satisfies the A; condition if there exists ¢ > 0 such that
Muw(z) < cw(z) a.e.
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Ajq weights

We say that w satisfies the A; condition if there exists ¢ > 0 such that
Mw(z) < cw(z) a.e.

The smallest possible ¢ here is denoted by ||w|| 4, -

o w(x)=|z|™* € A for0 < \ < n.

o (Mf)* e Ay for 0 < a <1 (R. Coifman and R. Rochberg, 1980).
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Ajq weights

We say that w satisfies the A; condition if there exists ¢ > 0 such that
Mw(z) < cw(z) ae.

The smallest possible ¢ here is denoted by ||w|| 4,

Theorem (C. Fefferman and E.M. Stein, 1971)

For any weight w and any function f,

Mwdz (a>0).

n . €
w{z e R .Mf(:n)>oz}§a/Rn|f
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Ajq weights

We say that w satisfies the A; condition if there exists ¢ > 0 such that
Mw(z) < cw(z) a.e.

The smallest possible ¢ here is denoted by ||w|| 4, -

Theorem (C. Fefferman and E.M. Stein, 1971)

For any weight w and any function f,

|/

w{mER”:Mf(m)>a}§;/ Mwdz (a>0).

n

@ In particular, if w € Ay, then

w{azeR":Mf(x)>a}§CHwHAl/ flwdz  (a>0).
« Rn
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Muckenhoupt-Wheeden Conjecture

Theorem (R. Hunt, B. Muckenhoupt and R. Wheeden, 1973;

R. Coifman and C. Fefferman, 1974)
Let T be a Calderon-Zygmund operator. If w € Ay, then

Wz € R |Tf(z)] > a} < E/R flods (a> 0).
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Muckenhoupt-Wheeden Conjecture

Theorem (R. Hunt, B. Muckenhoupt and R. Wheeden, 1973;

R. Coifman and C. Fefferman, 1974)
Let T be a Calderén-Zygmund operator. If w € Ay, then

w{z €R™: |Tf(z)| > a} < E/R Iflwdz  (a>0).

@ What is the sharp dependence of ¢ on |w|| 4,7
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Muckenhoupt-Wheeden Conjecture

weAl;»w{xean|Tf(x)|>a}g3/ flods (o> 0). J
a Jprn

@ What is the sharp dependence of ¢ on |w|| 4,7

Conjecture (B. Muckenhoupt and R. Wheeden)

w{xGR”:|Tf(a:)|>a}§§ |fIMwdz (o> 0).
Rn
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Muckenhoupt-Wheeden Conjecture

weAliw{xeR”:|Tf(:c)|>a}§£/ |flwdz (o> 0). J
a Jrn

@ What is the sharp dependence of ¢ on ||w| 4,7

Conjecture (B. Muckenhoupt and R. Wheeden)

Wiz R : [Tf(@)| > a} < E/R fMwdz (o> 0).

Weak Muckenhoupt-Wheeden Conjecture

weAl;w{xeR";ny(x)y>a}g§HwHAl/ flwds (o> 0).
Rn

v
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Muckenhoupt-Wheeden Conjecture

Conjecture (B. Muckenhoupt and R. Wheeden)

w{mER”:]Tf(m)]>a}§£/ fMwdz (a>0).
O JRrn

Weak Muckenhoupt-Wheeden Conjecture

weAl:,w{xeR":ny(x)y>a}g§HwHA1/ flwdz (a>0).
Rn

v

e The M-W conjecture is true for w(z) = |z| 7,0 < A <n
(S. Buckley, 1993).
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Muckenhoupt-Wheeden Conjecture

Conjecture (B. Muckenhoupt and R. Wheeden)

w{xGR”:]Tf(x)]>a}§§/ fMwdz (a>0).

| %
3
N

Weak Muckenhoupt-Wheeden Conjecture

w€A1:>w{x€R":|Tf(x)|>a}§§\|w”,41/ |flwdx (o> 0).
R

v

e The M-W conjecture is true for w(z) = |z|,0< A <n
(S. Buckley, 1993).

@ The weak M-W conjecture is open, in general, even for the
Hilbert transform

f

Hf(z) = P.V./R
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Unweighted weak type (1,1) of T'

(1te e " s 27(0)1 > b < Sl

Sketch of the proof (Calderén-Zygmund decomposition):
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Sketch of the proof (Calderén-Zygmund decomposition):
o Let Qy ={Mf>a}=U;Q;
1
[ — R e .
o Let f — g(aj) + b('r), where g(l’) — {Q] fQ] f x Q]
f(x), T & Qa.
g and b are called the * " and “bad” parts of f.
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(1te € "< 21(0)1 > b < Sl

Sketch of the proof (Calderén-Zygmund decomposition):
o Let Qy ={Mf>a}=U;Q;
1
—_ s E .
o Let f =g(z)+ b(z), where g(z) = {Qi fQi o eq;
f(x>7 T Qq.
g and b are called the * " and “bad” parts of f.

@ The “bad” part: [Qq| < £/ f[|11 and [ [Tb|dx < || f|| 1 imply

C
{761 > a}f < —[I £l
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Unweighted weak type (1,1) of T'

L .
o Let f = g(z) + b(x), where g(z) = {ﬁ;){% ! i ;si

g and b are called the * " and “bad” parts of f.

o The “bad” part: [Q| < £/f]|zr and [ [Tb|dx < || f||1: imply

C
H{IT0] > a}| < —Ifllz:-

A weighted extension is w{|Tb| > a} < S| fllz1(arw)- J
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Unweighted weak type (1,1) of T'

1 T i
o Let f = g(x)+ b(x), where g(z) = {}Q(;){Q] [ ’ Z gi

g and b are called the * " and “bad” parts of f.
@ The “bad” part: [Q| < £|f]|zr and [ [Th|dx < || f||L: imply

C
{ITH > o} < <1l

A weighted extension is w{|Tb] > a} < £||f|lz1(as). Therefore, the
“bad” partis “ " for the Muckenhoupt-Wheeden conjecture. J
@ The “ " part:

1
{ITgl > a}| < [Tgll7:

Chebyshev’s inequality
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Unweighted weak type (1,1) of T'

L .
et st e )= {17022

g and b are called the * " and “bad” parts of f.
o The “bad” part: |[Qq| < £/ f[|1 and [ [Tb|dx < || |1 imply

C
{76l > o} < —[Ifllz:-

A weighted extension is w{|Tb| > a} < || f|lz1(as). Therefore, the
“bad” partis “ " for the Muckenhoupt-Wheeden conjecture. J
@ The " part:

1 c 9
{[Tg] > a} S@HTQH%Q =3 llgllz

L2-boundedness of T’
() 5/ 15



Unweighted weak type (1,1) of T'

1
° = wher = mejf’xEQj
Let f = g(z) +b(x), where g(z) {fm, z ¢ Qa.

g and b are called the * " and “bad" parts of f.
o The “bad” part: |[Qq| < £/ f[|1 and [ [Tb|dx < || f||z1 imply

C
{76 > a}f < —[Ifllz:-

A weighted extension is w{|Tb| > a} < £||f|lz1(as)- Therefore, the
“bad” partis “ " for the Muckenhoupt-Wheeden conjecture. J
@ The “ " part:

1 9 c 9 c
{ITgl > a}l <5 [1Tgllz2 < 5llgllz2 = llglle

T

9] < ca
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Unweighted weak type (1,1) of T'

1 T i
o Let f = g(x)+ b(x), where g(z) = {fQ(jx){Qj [ ’ Z gi

g and b are called the * " and “bad” parts of f.
@ The “bad” part: [Q| < £|f]|zr and [ [Th|dx < || f||L: imply

C
{ITH > o} < <1l

A weighted extension is w{|Tb] > a} < £||f|lz1(as). Therefore, the
“bad” partis “ " for the Muckenhoupt-Wheeden conjecture. J
@ The “ " part:

1 2 C 2 C C
gl > ol < ITyl2 < S lals <Elollor< Sl

T

definition of g
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Unweighted weak type (1,1) of T'

o The “bad” part: [Qq| < £/ f[|1 and [ [Tb|dx < || f|| L1 imply

C
I8 > a3}l < Sl

A weighted extension is w{|Tb| > a} < £||fllz1(as)- Therefore, the
“bad” part is “ " for the Muckenhoupt-Wheeden conjecture. J

@ The " part:

1 c 9 c c
{ITgl > a} < ITgl2 < zlollze < Nl <21 f Iz

A weighted (w, Mw) L? inequality for T is not true. J
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Unweighted weak type (1,1) of T'

@ The “bad” part: Q| < £/f]|z1 and [q. [Th|dx < c| f||: imply

&
{170 > a}| < —Ifllz:-

A weighted extension is w{|Tb| > a} < || f|lz1(as). Therefore, the
“bad” partis “ " for the Muckenhoupt-Wheeden conjecture. J
@ The “ " part:

1 9 c 9 c c
{19l > o}l <5 ITgl3 < zllallze < llallor <l

A weighted (w, Mw) L? inequality for T is not true. Therefore, the
! " part is “bad” for the Muckenhoupt-Wheeden conjecture.
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Weighted inequalities for T

Let M¥* = M oMo ---o0 M be the k-th iterate of M.
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Weighted inequalities for T

Let M¥ = M oM o---o M be the k-th iterate of M.
Theorem (J.M. Wilson (1989, 1 < p < 2), C. Pérez (1994, p > 1))

For any weight w and any function f,
/ |T fPwdz < c/ |FPMPH wde  (p > 1),
n R

where [p] is the integer part of p.
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For any weight w and any function f,
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where [p| is the integer part of p. The number of iterations is sharp in the
sense that [p| + 1 cannot be replaced by [p|.

() 6 /15



Weighted inequalities for T

Let M¥ = M oMo---o M be the k-th iterate of M.
Theorem (J.M. Wilson (1989, 1 < p < 2), C. Pérez (1994, p > 1))

For any weight w and any function f,
/ |T fPwdz < c/ |FPMPH wde  (p > 1),
R R»

where [p| is the integer part of p. The number of iterations is sharp in the
sense that [p| + 1 cannot be replaced by [p.

Define the maximal operator M€ by

1+e _ ’f( )’)
M e Z%Em/'f “g<e+m dy (>0,
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Weighted inequalities for T

Let M¥ = M oMo ---o0 M be the k-th iterate of M.

/ (T fPuds < c/ FPMPHody (p> 1). J
n Rn

Define the maximal operator M'*¢ by

Y P T

Theorem (C. Pérez, 1994)

Let € > 0. For any weight w and any function f,

1eudr (o> 0).

Wz €R™: [Tf(@)| > a} < Z/R
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Weighted inequalities for T

1+e u e ’f( )’)
M f(x _Sp|Q|/|f |10g(~|—‘f| dy (e>0).

Theorem (C. Pérez, 1994)
Let € > 0. For any weight w and any function f,

wdzr (a>0).

w{xeR”:]Tf(x)]>a}§a/Rn|f /

o If we Ay, then M+ew(x) < c||cu\|1+€ (x). Hence,

oo €R:(Tf@)] > ab < E el [ flods (@>0)

() 6 /15



Weighted inequalities for T

Theorem (C. Pérez, 1994)

Let € > 0. For any weight w and any function f,

Iwdz (a>0).

w{z R : [T ()| > a} < Z/R

o If we Ay, then M'*ew(x )<c||w\|1+€ (x). Hence,
whw €R™: [T(@)] > a} < Z|lw H”°/ flodz (a>0).

@ The method of the proof gives ¢, =~ ¢'/¢. This does not allow to
bound cEHwHHE by [|w|| 4, (log ||w]|4,)? for any v > 0.
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A weighted inequalities for T'

Let « be the best possible exponent in

ITfllzewy < ellwlld 1 fllzrey (2> 1)
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A weighted inequalities for T'

Let a be the best possible exponent in

ITfllzrw) < ellwlld [1fllzrw) @ >1).

@ a>1forall p> 1 (R. Fefferman and J. Pipher).

o If the weak M-W conjecture holds, then o =1 for all p > 1.

Theorem (R. Fefferman and J. Pipher, 1997)

(/R (T Puwde) < el (/R P

@ A stronger inequality

(/Rn !Tf!2wdg;>1/2 - C(/Rn ’f‘Qz\j-dex>1/2

does not hold (J.M. Wilson-C. Pérez).
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A weighted inequalities for T'

Let a be the best possible exponent in

ITfllzr ) < ellwlld, [1flzrw) @ >1).

@ a >1 forall p > 1 (R. Fefferman and J. Pipher).

o If the weak M-W conjecture holds, then o =1 for all p > 1.

Theorem (R. Fefferman and J. Pipher, 1997)

([ rrspuds) ™ < clolla ([ 11Pods) ™

@ The proof is based on square function estimates. In particular, a deep
Chang-Wilson-Wolff theorem is used.
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@ The method of the proof shows that o =1 for all p > 2;
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A weighted inequalities for T'

Let v be the best possible exponent in

ITfllzrw) < ellwlld [1fllrw) @ >1).

o If the weak M-W conjecture holds, then oo =1 for all p > 1.

@ The method of the proof shows that o = 1 for all p > 2;
however, for 1 < p < 2 it gives only that o« <1/2+ 1/p.

A natural question is whether o« = 1 for all 1 < p < 2.

@ A question of interest is also the sharp dependence of ¢ on p.

o If the weak M-W conjecture holds, then
2

IT fll ooy < -

el fllzre (o> 1),

7/15



Main Results

Theorem (L-O-P, 2008)

For any Calderén-Zygmund operator T,

2
1T fll oy < c—=

o _qlelalfllre  (p>1).
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Main Results

Theorem (L-O-P, 2008)

For any Calderén-Zygmund operator T,

2
1T fll oy < c—=

o _qlelalfllre  (p>1).

This extends the Fefferman-Pipher theorem to all p > 1.

The method of the proof is completely different.

In particular, the result holds for any Calderén-Zygmund operator.
The result is sharp both with respect to ||w||4, and with respect to p.

Theorem (L-O-P, 2008)

Let o(t) = tlog(1 +t). Then, for any Calderén-Zygmund operator T,

oo €R": [Tf(@) > a} < Zp(lolla) | [flods (a>0)
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Main Results

@ This bound is best possible which can be obtained by means of the
Calderén-Zygmund method.
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Main Results

@ This bound is best possible which can be obtained by means of the
Calderén-Zygmund method.

@ That Theorem improves a previous one:

Theorem (L-O-P, 2007 (IMRN 2008))

p2

1
1Tl Lp o) < — Tto g(p Mwllallfllr@wy @ >1).

alet p(t) = tlog(1l + t)logt (log(1 +1t)). Then,

oo €R:TF@)| > 0} < Zplwlla) [ [flods (a>0).
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o Denote M, f(z) = M(|f[")"/"(z),r > 1.

«O>r «Fr «=>» «E» Q>



Two key estimates

o Denote M, f(z) = M(|f|")/"(x),r > 1.
e By Hdlder’s inequality, M f(x) < M, f(z).
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Two key estimates

o Denote M, f(z) = M(|f|")V/"(z),r > 1.
o By Halder’s inequality, M f(x) < M, f(z).

o Since M, f € Ay, we have M*f(z) < ¢}, M, f(z) for any k € N.

o Reverse Holder inequality: if w € A1, then there exist » > 1 and
¢ > 1 such that
M,w(x) < cw(x).

Let we Ay, and let 7, = 1 + W. Then
1

My, w(z) < 2[jw|[a, w(z).
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Two key estimates

Let we Ay, and let r, = 1+ W. Then
1

My, w(z) < 2[jw|[a, w(z).

Let 1 <r<2andp>1. Then

P 1
ITfllLr(w) < o 7T1||f||Lp(Mw)-
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Two key estimates

Let we Ay, and let 7, = 1 + 2”_+1|1|<UT' Then
1

My, w(z) < 2[jw|[a, w(z).

Let 1 <r<2andp>1. Then

pr 1
ITfllLr(w) < S — | £l 22 (a1,0) -

@ In particular, setting r = r,,, we get

2

ITfllLrwy < Cpp_ 1

wlla ey (0> 1).
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Two key estimates

Let w &€ Al, and Iet Tw = 1 + W Then
1

My w(z) < 2||lw][a, w(z).

Let 1 <r<2andp>1. Then

o1
ITfllLr(w) < — ,'A_ileHLP(J\J,-w)-

o Next, applying the Calderén-Zygmund method and the above
estimates to the " part, we obtain

ol ITf@)| > a} <o <”;’_A) = [ ifled.

1 a
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Two key estimates

Let 1 <r<2andp>1. Then

P 1
ITfllzr(w) < S 1 lze -

@ Next, applying the Calderén-Zygmund method and the above
estimates to the " part, we obtain

w p
w{z : |Tf(x)] >a} <c (H) 1/]Rn |flwdz.

«

@ It remains to optimize this inequality with respect to p. Setting
— 1 ;
P =1 Ggririara,) &ves

1
ol [Tf(@)] > a} < cllola, og(1 + lwlla) [ 1/lude

()
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Main ideas used in the proof

Let 1 <r<2andp>1. Then

P 1
ITfllzr(w) < -~ 7 1l (ar,)-
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Main ideas used in the proof

Let 1 <r<2andp>1. Then

1

—1r—1

ITfllzr(w) < = I £l 22 (a1, ) -

@ Restatement by duality:
2
HT f||Lp’ ((]\rif,<w)17p,) S Cp _ 1 r— 1 HfHLP/(LUl*P/)‘

o Coifman-type estimate:
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Main ideas used in the proof

Let 1 <r<2andp>1. Then

1

—1r—1

ITfllzr(w) < = I £l 22 (a1, ) -

@ Restatement by duality:
o1

HT*fHLp’ ((A/\er)lfp’) S Cp _ 17,_71Hf“LP/(w1*P/)‘

o Coifman-type estimate:
* /
||T f||Lp/ ((A’[rw)l_p/) S cp ||Mf||Lp/ ((]\J7~w)l_p/) .
@ Holder's inequality:

(MY < (Mo =M ((fuo™ )Y /)
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Main ideas used in the proof

© Restatement by duality:

o1
HT f”LP’((ﬂ]NJ)l*p') < Cp —1r—1 HfHLp’(wlfp’)-
o Coifman-type estimate:
* /
IT* £l () < P I (31,1
@ Holder's inequality:
/ / NP/ (pr)
(MFY" < (M) =10 ((fo ) )

@ Hardy-Littlewood maximal theorem:

1
_ / o) D
I3 (Y, < e
L)
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“T*f”Lp/ ((Mrw)l_p’) < Cp’HMf”Lp ((M,«w)l—P’) .

«Or» «Fr «=» «=)>» a



Coifman-type estimate

17 Pl (g i) S DIl (a1 pror) J

o u=(M,w)" P € Ay. The standard method of the proof applying
to u gives 2¢ instead of p'.

@ Previously, we obtained p’log(ﬁ)
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Coifman-type estimate

1T 1 () < P I i) J

o By duality,

HT*f“Lp’((JVL-ml—P’) = sup /n |T* f|h dz,

Bl e (ar,0)=1

so we have to show that

sup T fllzsy < 1M Ly (41 J

121l e (a2 ) =1
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Coifman-type estimate

sup (T Fllzagey < 1My (g, pr) J

IRl e (rr ) =1

@ An improved Coifman-type estimate: if u € Ag, then

IT*fll .y < cllullas M fll L1y,

|| As :Sgp (’Ql\/Qu) (‘22|/Qu—1/2>2.

where
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Coifman-type estimate

IRl e (a2 ) =1

sup T gy < B IM (00 J

@ An improved Coifman-type estimate: if u € As, then

1T fll 1wy < cllullag 1M £l 21 )

llu]| Ag :sgp <|Ql|/Qu) <@/62u_1/2>2.

@ The proof is based on results due to S. Buckley (1993) and
R. Fefferman and J. Pipher (1997).

where
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Coifman-type estimate

ST Fllzsy < BIMI (010 J

IRl Lp (az,w)=1

17" Fllzay < ellullag|MF - J

@ There exists an operator R satisfying
R< R, Rl <2 RG], < e

In particular, the last property yields ||Rh| 4, < cp'.
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Coifman-type estimate

IRl e (a2 ) =1

sup Tl < D IM 0y 0 J

17" Fllza oy < ellullag | Ml - ]

@ There exists an operator R satisfying
h<R(h), |Rlponw) <20 [ROYMw) P, < cp'.
In particular, the last property yields ||Rh| 4, < cp'.

@ R is constructed by means of the Rubio de Francia method:

M (h(0,)1/7) i L st

S(h) = d R —
W =—Gnom 2 (11221, )"

=0
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Coifman-type estimate

sup T fllpry < D IMEN L (orr o)
ll (a1 )=1 ) 17 ()

17"l < ellullag| M- J

@ There exists an operator R satisfying
h<R(h), |Rllene) <2, IR (Mw)/P)la, < cp.
In particular, the last property yields ||Rh|| 4, < cp'.

@ By the above estimates and Holder's inequality,

IT*fllerwy < N fllorrny < cllRA|lag| M fll 21 (rp)
< CPIHMfHLP’((M,,,w)lfp’)'

() 12/15



Closely related open questions I

Suppose that T' = H is the Hilbert transform.
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Suppose that T' = H is the Hilbert transform.
o If the M-W conjecture holds, then

/\Hf]pwdxgc/|f|p(]\/fw/w)pwda: (p>1).
R R
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Suppose that T' = H is the Hilbert transform.
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R R

@ By duality, this inequality is equivalent to

’ w ’ 1
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Closely related open questions I

Suppose that T' = H is the Hilbert transform.
o If the M-W conjecture holds, then

/\Hf]pwdxgc/|f|p(]\/fw/w)pwda: (p>1).
R R

@ By duality, this inequality is equivalent to

Jisr < [ 17

@ Setting w = | f|, we obtain

p/
[ (5 e <e [ 15100 >,

—dx (p' > 1).
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Closely related open questions I

@ If the M-W conjecture holds, then

/\Hf|pwd:r§c/|f|p(]\1w/w)pwd$ (p>1).
R R

o By duality, this inequality is equivalent to

Jusl e < [ 111

, we obtain

HITY" :
[ (B e <e [ 15100 >,

o By Holder's inequality,

[ (5 < [inae ¢ >0,

@ Setting w =

—dz  (p' >1).
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Closely related open questions II

@ Consider the following version of the weak M-W conjecture
w{z € R: Hf(x) > 1} < cflwlla, || fllLr(w)

in the case when f = >"}'_, &, , where t; <ty < --- < tp.
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Closely related open questions II

@ Consider the following version of the weak M-W conjecture
w{z € R: Hf(x) > 1} < cllwla, I/l L2 )
in the case when f =37 | &, , where t; <ty <--- < tp.

o We get

n

A Zw(tk)'

k=1

n
1
w GR:E >1}< )
{1,‘ k*lx_tk _CHQ/
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Closely related open questions II

n 1 n
w{x eR: ; > 1} < clwlla Y wity).

k=1

e w =1 [G. Boole (1857), L.H. Loomis (1946)]:
Let A(rj) = 1. Then {h > 1} = U}, (t, 1), where ), <7 < lpp
and Yy, (ry — tx) = n. Hence, [{h > 1}| =n.

@ Is it possible to extend this approach to the case w € A;7?
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Closely related open questions I1I: A, problem

s, =50 (5 [ e i) (i / w<x>—1/<p-”d:c)p_l <.

o
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Closely related open questions I1I: A, problem

s, =50 (5 / wo)r) (o / w<x>—1/<p-”d:c)p_l <.

@ It is a difficult open problem whether a Calderén-Zygmund operator
T satisfies the following sharp inequality with respect to ||w/|4,:

{1527}

1T fllr(wy < cllwlla,

o

Ifllerw) (1 <p<o0).
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s, =50 (5 / wo)r) (o / w<x>—1/<p-”d:c)p_l <.

@ It is a difficult open problem whether a Calderén-Zygmund operator
T satisfies the following sharp inequality with respect to ||w/|4,:

max 1,%
1T fll ey < cllwll, = [fllep@) (1 <p<o0).
© S. Petermichl and A. Volberg (2002), S. Petermichl (2007-2008)
solved in particular cases

o
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Closely related open questions I1I: A, problem

s, =50 (5 / wo)r) (o / w<x>—1/<p—1>dx)p_l <.

@ It is a difficult open problem whether a Calderén-Zygmund operator
T satisfies the following sharp inequality with respect to ||w/|4,:

max 1,%
1T fllLew) < cllwlla, s 1}IIfIILp(w) (1 <p <o)

© S. Petermichl and A. Volberg (2002), S. Petermichl (2007-2008)
solved in particular cases

o

Corollary (L-O-P 2008))

Let 1 < p < oo and let T be a Calderén-Zygmund operator. Also let
w € Ap, then

1T £l ooy < cllwlla, (1 +log wlla,) I f1l e (w),
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