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i OUTLINE OF PRESENTATION

e Introduction/Motivation: What 1s wetting? Why 1s 1t
important?

«The Fully-Augmented Young-Laplace Equation
« Young’s relationship: static contact angles.

e A 2D sessile drop = puddle.

o Capillary rise

e The future behind



Wetting applications: boiling and condensation

Cooling electronic circuits

60°F d

Heat pipes rely on

boiling and
Hot, Very condensation of the
i cooling liquid.

Micro-heat pipes are
about 1 mm in

t Moisture i
sy diameter,

Using Heat Pipes to Standard @
Improve Efficiency Cooling Coil
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Super-hydrophobic surfaces:

BASF Akfiengesellscharft

What does Nature Teach Us?

Structure highly d Us\ii maht%r'i]als
on several levels . hydrophobicity
L» Lotus-Effect <J

BASF Aktiengesellschaft

Superhydrophobicity

BASF Akfiengesellschaft

coﬁiact angle > 140°

Lotus Plant — Nelumbo Nucifera
Professor Barthlott

Super-hydrophobicity is the result
of chemistry and structure.




* Self-cleaning superhydrophobic surfaces

= Structure & Chemistry
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Wetting precedes adhesion:

Lo root
; ) stem plaque
E ;J. : \ - \ .a@mil portLOE : dlsﬂeoﬁlon
fiber core coating
- surface coupling

Seta

Feet of a geico and
the threads of a

- mussel are examples
of natural adhesives.

Spatula \
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Adhesional
contact
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#

density kgfm3

Vapor/Liquid Interfaces

gras

bulk density

distance nm

Interfaces are:
1. Diffuse (3D)
2.Dynamic

3. Asymmetric

!!unhappy!!
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Static Contact Angles:Young relationship
and the Young-Laplace equation.

solid

CAPILLARITY: The curvature of
the interface and the specific
interfacial free energy of the
interface, are related to the
pressure jump between the
inside and outside of a liquid
drop.

YOUNG-LAPLACE EQUATION

(pin_ pout)_zH Oy =0

WETTING: The contact angle for a
three-phase region is the main
variable in Young’s equation.

THOMAS YOUNG, 1805

o, — Og =0, cosO

Pout




— {R,, R, :principal radius of curvature

Young-Laplace Equation in Differential Form:
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The equation of Young and Laplace:
Historical introduction.

= Thomas Young [Phil. Trans. Roy. Soc, vol 95, pp. 65-87
(1805)]

Born in Milverton, Somerset (1773) youngest of 10 children

Studied medicine in London, Edinburgh and physics in Gottingen
Entered Emmanuel College in Cambridge and practiced medicine in London
Appointed professor of Natural philosophy at Royal Institution (1801)
Foreign associate in French Academy of Sciences (1827)

Wave theory of light, Young modulus, translated hieroglyphs, etc.

= Pierre Simon de Laplace [Ouvres Completes, pp. 394
(1807)]

Born in Normandy, 1749.

Univ. of Caen (16 years old)

Univ. of Paris (18 years old).

Rejected by Acad. of Sciences (22 yr old)
Accepted to Berlin Acad. of Sci. (24 yr)

= Young never wrote the equation!

“On the attribution of an equation of capillarity to Young and Laplace”, Pujado, Huh
and Scriven, JCISvol. 38, pp 662-663, (1972).



Surfaces in 3D space:
Surface geometry

= Surfaces in 3D space:
= Orientable in space
= Locally have two sides

= Globally have in general two sides with famous
exceptions (Mobius strip)

« If they are closed, separate an inside space
from an outside space with famous exceptions
(Klein bottle)

They have shape
= Globaly shape distinguishes a torus from a sphere
= Locally it is distinguished by its curvature




-L Surface curvature

1. Location: a point on the surface is described by
the vector R.

2. Orientation: the top and bottom are described
by a unit vector n, normal to the surface

3. Two tangents unit vectors, a, and a, are
normal to each other and both are normal to
the vector n.

4. Points on the surface can be described on the
basis of a two dimensional system.

5. The rate of change of orientation (normal)
corresponds to the intuitive notion of shape.

6. Curvature is defined as the inverse, 1/R, of the
radius of a circle tangent to the surface.

7. There are two independent radius of curvature
and their directions are normal to each other.




derivation. Butt et al. pp10. 2003

E = €, |:n'l'gt Ft

i Young-Laplace equation:simplified

df =2cdl sina+ 2cdlsin g

sina =d/R, ; sinf=d/R,

df =2dodl| —+2
Rl R2

jzda(l ; ljdé’dlzﬂdza(l ; lj
0 Rl R2 Rl R2




Minimal surfaces (soap films):
Lagrange, Nitsche, others

Lagrange: Lectures on a novel method for the

determination of maxima of integral formulae, 1762
01 oz Y
“2(xy) = 1()=]] \/”( j (ayj A *

Definition: A minimal surface is a surface whose mean curvature is zero
at every point of the surface.

Theorem: If there is a portion of a surface of minimum area among
all portions of surfaces bounded by the same closed curve, then the
surface is a minimal surface.

Minimal surfaces are sometimes defined as surfaces with the
property that any portion of them bounded by a closed curve has
the minimum area.

JH — Z, - 2z.2,2,, N 4

[H(zx)2 +(zy)2T/2 [1+(zx)2 Jr(zy)zT/2

Yy

[1+(zx)2+(zy)2}l/2




Static Contact Angles
Young's relationship (1805):

An Essay on the
Cohesion of Fluids
Phil. Trans. Roy. Soc.
v. 95, 65-87

“We may therefore inquire into the conditions of
equilibrium of the three forces acting on the angular
particles, one on the direction of the surface of the
fluid only, a second in that of the common surface
of the solid and fluid, and the third in that of the
exposed surface of the solid. Now supposing the
angle of the fluid to be obtuse, the whole superficial
cohesion of the fluid being represented by the
radius, the part of which acts in the direction of the
surface of the solid will be proportional to the
cosine of the inclination; and its force added to the
force of the solid, will be equal to the force of the
common surface of the solid and fluid, or to the
difference of their forces; consequently, the cosine
added to twice the force of the fluid; will be equal
to ....



Interfaces are not 2D surfaces!

Interfaces are:
1. Diffuse (3D)
2.Dynamic

3. Asymmetric
bulk density

llunhappyll

density kg/ m3

distance nm



Macroscopic definition of contact angles

o, — Oy =0, Cosl

*Young (1805) derived relation as
a balance of forces.

« Equation can be derived using
Macroscopic arguments.

*Specific interfacial free energies
are macroscopic/thermodynamic
parameters.

 Contact angles are macroscopic
parameters and thermodynamic
functions.




Derjaguin et al. Surface Forces, (1987) Plenum

i Surface forces of the second kind:

Derjaguin and

Obuchov (1936)

—

Y

llunhappyll

A
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* llhappyll

At the contact line, there is an
interaction of molecular force
fields due to the presence of a
third phase.

Forces of the second kind are the same
forces determining surface tension:

(1) Dipole-dipole, nonpolar or charge-
dipole interactions.(van der Waals)

(2) Electrical double layers

(3) Structural forces induced by
molecular order.



Augmented and Fully-augmented Young-
Laplace equation:

Static Jump-Momentum balance:

Derjaguin et al. Surface
Forces (1987)

Teletzke, Davis and Scriven
(1988)

Normal component:
2H gy, (r.0) + (p® - p*+TI(r,0)) =0

Tangential component:

- S gV'— (r’ 9) =
0+o,
FSOl P;'es —
=0y, + I (TI(r,8))rde
- O] 6-5,
Miller and The Young-Laplace equation is valid away
Ruckenstein (1974) from the solid surface where disjoining
Jameson and del pressure is negligible and surface tension is

Cerro (1976). constant!



i

Derjaguin and Obuchov (1936)

e disjoining pressure, 11
Adsorbed Film 6 6
.
5 67 h’
SV
- e variable surface tension, g,
dg,

Questions! d h

e Is Young's equation really valid?
e What 1s the proper definition for 6, ?

e Howis &, to be measured?

e Where 1s 6, located on the vapor/liquid interface?




ﬂContact Angles (Merchant and Keller, 1992)

Used the method of matched asymptotic
expansions to validate Young’s equation!

% Leading term in the outer expansion for the interface
shape satisfies the Young-Laplace equation.

% Leading term in the inner expansion satisfies an
integral equation.

4 N

% Matched the two solutions and confirmed that
the slope angle — of the leading term in the
outer expansion is 0,

-as given by Young’s equation.

N /




Interesting relationships for 2D systems:
L. E. Scriven, class notes UofM, circa 1980

l dy
h=y(X), tanfd =—
y . y( ) dx
ay
X o sin @ = — ax i
dy d’y (dyY ay
dsing _ dx? ~dx® \d j _ 1+(ij
dx |:1+(dy)2} {H(dyjz} _ 1 _
dx X cosl =— —
dy dy ’
o dX2 3/2 =2H 1+(de




- - - Quere (2004) the
Two-dimensional fluid wedge.

housewife problem.

| MacrOSCOpic a pproach . {de Gennes, Brochard,

Young-Laplace Equation: Y ) ., p-—p' =pg (hC —h)

3/2

2 2
2H :6—?/ 1+(8_hj
oz 0z

Scriven, ChEn 8104 class notes (1982)

dcos@ h.-h| 2_ O
= L. =
dh L. P9




Integrate and introduce one
=l, boundary condition at a time:

hoh b
cosf =—=————+C {BC. cosd=1 at h=h,
ERTE
2
c-1-t
2L
2 2 2
cosf =1— e +hch— h = h=0 = cosf, =1- e

21

/ng EETE o

Defines contact angle as the\
Solution to Young —Laplace equation angle of intersection between
describes the gas-liquid interface of solution of YL equation and
a liquid puddle resting on a smooth, the solid surface.

horizontal surface. \_ J




Second method:

2
cosﬁzhczh— h2
L
C=cos0,
2
cos b, :cosé?—hczh+ h2 = h
EPTE

+C {B.C. cosf=cosg, at h—0

— cosd =1

\

Solution to Young —Laplace equation
describes the gas-liquid interface of
a liquid puddle resting on a smooth,
horizontal surface.

Defines contact angle as the
angle of intersection
between gas-liquid interface
and the solid surface.




]h Consequences:

1] Mathematical
definition of &,

2] Measurement of 6’>

/6?0 is the B.C. at the solid

surface for solutions of the

Young-Laplace equation
0=60, when h = 0

~

he

2

Fluid wedge: cos@, =1-

~

* match data points to a solution of the

Young-Laplace equation.
% extend the solution to h =0

% measure the angle.




ﬁ Questions

Questions!

\/ e Young's relation 1s macroscopically valid.
v 6, definedas B.C. for YL equation.

v ¢, 1s measured intersecting YL with solid.

e Where 1s 6, located on the vapor/liquid interface?




Fluid Wedge: 3-region model

Transition Region
10°m <1< 10 m
Po=Pyt Pp

e

Molecular Region
r<10"m
Pe=Pp

\

|
|
|
|
|
I
|
|
|
|
|
1

Capillary Region
10 m<r<10-m
Po=Fy

o= 0,?

Pe.= capillary pressure
Pp= disjoining presswure
Py = hydrostatic pressure

ANZNZNZNZNZNZNZS




Characteristic
Film Thicknesses

/hc ~107m
h ~3.10"m
null hm -~ lo_lom
hm
g=—"
hm MOLECULAR I‘]t
\ | g~10"-10""
SR risstiion




* Derjaguin
0,, =specific interfacial free energy

dgy, - —11(h) = AL - A

dh 6zh’

Note: ¢, ~0.995c when h=10"m



Transition Region: Null Curvature Point

2Ho =-T1-pg(h. —h)

, ( Augmented
dcosé h . h.-—h
— = — ——5— 9 Young-Laplace
dh K L |
equation
2

M b
h3 2
At the null curvature point; h=h, ,2H =0 t Lc

N
Since h/h. <1 - D




Location of 0_
~dcos® h, h.-—h h:

cos@, =1-

dh h L2 2L
1 BC h=h. = 6=0

2 2 2
cos@—cosl, = hmz— hmz LU ~ |2(1—cos6,)
oh' 2h |\ 2R

l

- terms

(ﬂ

2

ht smaller
cos 6, —cos b, = ” 2(1-cosb,) +
3,
2




Transition region: Location of 9,

Where, on the vapor/liquid interface, is 6, to be found?

h

But:

Nowhere!

0,26, o O(&)

cos b, —cosO, = % g’

(r .
since 6, >0, >0

\for all @ on interface
N

~

)




HEPTANE ON PTFE




EL CAPILLARY RISE: MACROSCOPIC APPROACH

I
2Ho =pQy

McNutt and Andes, J. of Chemical
Physics (1969)
Legendre transformation




ﬂ Capillary Rise: Molecular Approach

2
_deost _p9y M rp_g at h=h
| dh o
2 hs
cosf, = hm2 —j‘lz dh
2 S o0 LC

dh=(dh/dy)dy =—cot(z/2-0) dy =—tanOdy

__dy :(Y2 ~(v2/2) )m

fytan&dy :T Y-Y’/2
L O(Yz—(Yz/z)z)

2 2 2 h; 2 2 2
cos 0, ;\/\(S ~-(Y$/2) o :\/YO (Y7 /2)



Further Analysis

d cosd&
=—JII(h
O~ (h)
dg,,
=—TI1I(h,0
ih (h,8)
:—gVL—dCOSH = Ing,, =—cosd+C
d h
* But: ¢ (h)ZO' l—l(h—mjz —> d=—1 _l_l m d +C
- YwL 7 h COSU = ns o > h

h=h,

* Determine C:
0=20,

4
C=cosd, +1na+0(2—mj

L



h<10” m

) 4
[6] _ al6] cosd =cos 6, —In l—l(h—mJ +0 Dy
h: = L L 20 h h

* Gives d=6(h,h,,6,) in molecular region.

s> 'Ims» Yo

* Proceed down to 8 = 0!

h=h, ; =0 l

2
cost, =1+In 1—l L
2\ hy




i Comparison with experiments:

21 20.8
26 25.8
32 31.7
35 34.5
39 38.7
42 41.8
44 43.7
46 46.2




Molecular Interactions (close to the contact line)
0,, — surface tension

give rise to variations in _
@ - slope of interface

s.t 60— 0,

as h—h,
9 =0

Macroscopic contact angle, 6., 1s
e the B.C. for solutions of YL equation at surface h=0

e obtained by matching data points to solutions

of the YL equation, extending the solutionto h=20

and measuring the angle.
e may or may not be found anywhere 1n the interface.



