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OUTLINE OF PRESENTATIONOUTLINE OF PRESENTATION

●Introduction/Motivation: What is wetting? Why is it●Introduction/Motivation: What is wetting? Why is it 
important?

Th F ll A d Y L l E i●The Fully-Augmented Young-Laplace Equation

● Young’s relationship: static contact angles.

● A 2D sessile drop = puddle.

C ill i● Capillary rise

● The future behind



Wetting applications: boiling and condensationWetting applications: boiling and condensation

Cooling electronic circuitsCooling electronic circuits

Heat pipes rely on eat p pes e y o
boiling and 
condensation of the 
cooling liquid.
Micro heat pipes areMicro-heat pipes are 
about 1 mm in 
diameter.



Super-hydrophobic surfaces:Super hydrophobic surfaces:

Super-hydrophobicity is the result 
of chemistry and structure.



Self-cleaning superhydrophobic surfacesSelf cleaning superhydrophobic surfaces

Structure & Chemistry



Wetting precedes adhesion:Wetting precedes adhesion:

Feet of a geico and 
the threads of a 
mussel are examples 
of natural adhesives.



Vapor/Liquid InterfacesVapor/Liquid Interfaces

Interfaces are:

1.Diffuse (3D)

2.Dynamic

3 Asymmetric3.Asymmetric



Static Contact Angles:Young relationship 
and the Young-Laplace equationand the Young Laplace equation.

WETTING: The contact angle for a 
th h i i th i

THOMAS YOUNG, 1805

three-phase region is the main 
variable in Young’s equation.

cosSV SL LVσ σ σ θ− =

,

CAPILLARITY: The curvature of 
the interface and the specificthe interface and the specific 
interfacial free energy of the 
interface, are related to the 
pressure jump between the 

YOUNG-LAPLACE EQUATION

inside and outside of a liquid 
drop.

( ) 2 0in out VLp p H σ− − =



Young-Laplace Equation in Differential Form:

2p p H σ

{1 1

2inside outsidep p H σ= −

{ 1 2
1 2

1 12 , :principal radius of curvatureH R R
R R

= +

2

;inside in outside out in op g z p g z g z

d z dz

ρ ρ ρ= =

⎧ ⎫
⎪ ⎪

�

( ) ( )
2

3/2 1/21/2 1/2in out in o

d z dz
d x dxg z g z z
dz dz

ρ ρ ρ σ

⎪ ⎪
⎪ ⎪

− = − = +⎨ ⎬
⎡ ⎤ ⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞1 1dz dzz

dx dx
⎡ ⎤ ⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞+ +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭



The equation of Young and Laplace:
Historical introductionHistorical introduction.

Thomas Young [Phil. Trans. Roy. Soc, vol 95, pp. 65-87 
(1805)](1805)]

Born in Milverton, Somerset (1773) youngest of 10 children
Studied medicine in London, Edinburgh and physics in Gottingen
Entered Emmanuel College in Cambridge and practiced medicine in London
A i d f f N l hil h R l I i i (1801)Appointed professor of Natural philosophy at Royal Institution (1801)
Foreign associate in French Academy of Sciences (1827)
Wave theory of light, Young modulus, translated hieroglyphs, etc.

Pierre Simon de Laplace [Ouvres Completes pp 394Pierre Simon de Laplace [Ouvres Completes, pp. 394 
(1807)]

Born in Normandy, 1749.
Univ. of Caen (16 years old)
U i f P i (18 ld)Univ. of Paris (18 years old).
Rejected by Acad. of Sciences (22 yr old)
Accepted to Berlin Acad. of Sci. (24 yr)

Young never wrote the equation!Young never wrote the equation!
“On the attribution of an equation of capillarity to Young and Laplace”, Pujado, Huh 
and Scriven, JCISvol. 38, pp 662-663, (1972).



Surfaces in 3D space:
Surface geometrySurface geometry

Surfaces in 3D space:
Orientable in space
Locally have two sides
Globally have in general two sides with famous 
exceptions (Mobius strip)
If they are closed separate an inside spaceIf they are closed, separate an inside space 
from an outside space with famous exceptions 
(Klein bottle)
They have shape

Globaly shape distinguishes a torus from a sphere
Locally it is distinguished by its curvatureLocally it is distinguished by its curvature 



Surface curvatureSurface curvature
1. Location: a point on the surface is described by 

the vector Rthe vector R.

2. Orientation: the top and bottom are described 
by a unit vector n, normal to the surface

3. Two tangents unit vectors, a1 and a2 are 
normal to each other and both are normal to 
the vector n.

h f b d b d h

( ), ,R R x y z=
� �

4. Points on the surface can be described on the 
basis of a two dimensional system.

5. The rate of change of orientation (normal) 
d t th i t iti ti f h

( )1 2,r R u u=
� �

1 1 2 21/ ; 1/R Rκ κ= =
corresponds to the intuitive notion of shape.

6. Curvature is defined as the inverse, 1/R, of the 
radius of a circle tangent to the surface.

( )1 2
1 2

1 1 1 1
2 2

1

H
R R

κ κ
⎛ ⎞

= + = +⎜ ⎟
⎝ ⎠

7. There are two independent radius of curvature 
and their directions are normal to each other.

1 2
1 2

1K
R R

κ κ= =



Young-Laplace equation:simplified 
derivation Butt et al pp10 2003derivation. Butt et al. pp10. 2003

r n t tF e F e F= +
� � �
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Minimal surfaces (soap films): 
Lagrange Nitsche othersLagrange, Nitsche, others

Lagrange: Lectures on a novel method for the 

determination of maxima of integral formulae, 1762g ,

( ) ( )
22

, 1
S

z zz z x y I dxdy
x y

ε
⎛ ⎞∂ ∂⎛ ⎞= ⇒ = + + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫∫

Definition: A minimal surface is a surface whose mean curvature is zero 
at every point of the surface.

Theorem: If there is a portion of a surface of minimum area amongTheorem: If there is a portion of a surface of minimum area among 
all portions of surfaces bounded by the same closed curve, then the 
surface is a minimal surface.

Minimal surfaces are sometimes defined as surfaces with theMinimal surfaces are sometimes defined as surfaces with the 
property that any portion of them bounded by a closed curve has 
the minimum area.

2 z z z zz
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Static Contact Angles
Young’s relationship (1805):Young s relationship (1805):

θ “We may therefore inquire into the conditions of
SV cosSL VL oσ σ σ θ− = We may therefore inquire into the conditions of 

equilibrium of the three forces acting on the angular 
particles, one on the direction of the surface of the 
fluid only, a second in that of the common surface 
f th lid d fl id d th thi d i th t f thof the solid and fluid, and the third in that of the 

exposed surface of the solid. Now supposing the 
angle of the fluid to be obtuse, the whole superficial 
cohesion of the fluid being represented by the g p y
radius, the part of which acts in the direction of the 
surface of the solid will be proportional to the 
cosine of the inclination; and its force added to the 
force of the solid will be equal to the force of theforce of the solid, will be equal to the force of the 
common surface of the solid and fluid, or to the 
difference of their forces; consequently, the cosine 
added to twice the force of the fluid; will be equal An Essay on the 

Cohesion of Fluids to ....Cohesion of Fluids 
Phil. Trans. Roy. Soc. 
v. 95, 65-87



Interfaces are not 2D surfaces!Interfaces are not 2D surfaces!

Interfaces are:

1.Diffuse (3D)

2.Dynamic

3 Asymmetric3.Asymmetric



Macroscopic definition of contact angles

cosSV SL LVσ σ σ θ− =

•Young (1805) derived relation as 
a balance of forces.

θs • Equation can be derived using 
macroscopic arguments.

•Specific interfacial free energies•Specific interfacial free energies 
are macroscopic/thermodynamic 
parameters.

• Contact angles are macroscopic• Contact angles are macroscopic 
parameters and  thermodynamic 
functions.



Surface forces of the second kind:
Derjaguin et al Surface Forces (1987) PlenumDerjaguin et al. Surface Forces, (1987) Plenum

Derjaguin and 

At the contact line there is an

Obuchov (1936)
At the contact line, there is an 
interaction of molecular force 
fields due to the presence of a 
thi d hthird phase.
Forces of the second kind are the same 

forces determining surface tension:

(1) Dipole-dipole, nonpolar or charge-
dipole interactions.(van der Waals)

(2) Electrical double layers( ) y

(3) Structural forces induced by 
molecular order.



Augmented and Fully-augmented Young-
Laplace equation:Laplace equation:

Static Jump-Momentum balance: Derjaguin et al. Surface 

( ) ( )( )2 0B Ag rH p p r θθ + − +Π =

Normal component:
j g

Forces (1987)

Teletzke, Davis and Scriven 
(1988)

( ) ( )( ),2 , 0VLg rH p p r θθ + +Π =

Tangential component:

( )θ( )

( )( )

,
L

VLg

r r d

r
θ δ

σ θ

θ

θ
+

=

+ Π∫
Miller and 

( )( ),
L

VL r r d
θ δ

σ θθ
−

= + Π∫
The Young-Laplace equation is valid away 

Ruckenstein (1974)

Jameson and del 
Cerro (1976).

g p q y
from the solid surface where disjoining 
pressure is negligible and surface tension is 
constant!



MOTIVATION: molecular interactions

Derjaguin and Obuchov (1936)
disjoining pressure• Π

[ ] [ ]6 6

3

 disjoining pressure,

      
6
SL LLA A

hπ

• Π

−
Π =

6
 variable surface tension, gVL

h

d g

π
•

       VLd g
d h

= −Π
Questions!

Is Young's equation really valid?• Is Young s equation really valid?
 What is the proper definition for ?
How is to be measured?

oθ
θ

•
•

• How is    to be measured?
 Where is located on the vapor/liquid interface?

o

o

θ
θ

•

•



Contact Angles  (Merchant and Keller, 1992)

Used the method of matched asymptotic 
i t lid t Y ’ ti !expansions to validate Young’s equation!

Leading term in the outer expansion for the interface     
shape satisfies the Young-Laplace equation.

Leading term in the inner expansion satisfies an  
integral equationintegral  equation.

Matched the two solutions and confirmed thatMatched the two solutions and confirmed that
the slope angle – of the leading term in the 
outer expansion is  θo

i b Y ’ i-as given by Young’s  equation.



Interesting relationships for 2D systems:
L E Scriven class notes UofM circa 1980L. E. Scriven, class notes UofM, circa 1980

( ) , tan dyh y x θ= =( ) , tanh y x
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2
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dx dx
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Macroscopic approach:
Two-dimensional fluid wedge.

de Gennes, Brochard,
Quere (2004) the

h if bl

⎧
⎪
⎨
⎪
⎩Two dimensional fluid wedge.  

Young-Laplace Equation: ( ) ( )2   ,  L V L V
CH p p p p g h hσ ρ= − − − = −

housewife problem.⎪
⎩

( )
3/222

22 / 1h hH
z z

⎡ ⎤∂ ∂⎛ ⎞= +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦

cos2 ; tand dhH θ θ= − =

Scriven, ChEn 8104 class notes (1982)

⎝ ⎠⎢ ⎥⎣ ⎦

2 ; tanH
dh dz

θ

cos Ch hd θ −
=

2
CL σ
=

{
2

1Ch h h C C h hθ θ

2
Cdh L

C gρ

{2 2cos . . cos 1
2

C
C

C C

h h h C B C at h h
L L

θ θ= − + = =



Integrate and introduce one 
boundary condition at a time:

{
2

Ch h h

boundary condition at a time:

{2 2

2

cos . . cos 1
2

1

C
C

C C

C

h h h C B C at h h
L L

hC

θ θ= − + = =

2

2 22

1
2

cos 1 0 cos 1

C

C

C C C

C
L

h h h hh hθ θ

= −

= − + − ⇒ = ⇒ = −2 2 2 2cos 1 0 cos 1
2 2 2o

C C C C

h
L L L L

θ θ= + ⇒ = ⇒ =

Solution to Young –Laplace equation 
describes the gas-liquid interface of 
a liquid puddle resting on a smooth,

Defines contact angle as the 
angle of intersection between 
solution of YL equation and 
the solid surfacea liquid puddle resting on a smooth, 

horizontal surface.
the solid surface.



Second method:

2

{
2

2 2cos . . cos cos 0
2

C
o

C C

h h h C B C at h
L L

C

θ θ θ

θ

= − + = →

2

2 2

cos

cos cos cos 1
2

o

C
o C

C

h h h h h
L L

θ

θ θ θ

=

= − + ⇒ = ⇒ =
2C CL L

D fi l h
Solution to Young –Laplace equation 
describes the gas-liquid interface of 
a liquid puddle resting on a smooth, 
h i t l f

Defines contact angle as the 
angle of intersection 
between gas-liquid interface 
and the solid surface.

horizontal surface.
and the solid surface.



Consequences:

[ ]1 Mathematical is the B.C. at the solid                 oθ[ ]
     definition of oθ

surface for solutions of the
Young-Laplace equation

h 0hθ θ when    0o hθ θ= =

2

Fluid wedge: cos 1 Chθ 2Fluid wedge:     cos 1
2

C
o

CL
θ = −

[ ]2 Measurement of oθ

match data points to a solution of the
   Young-Laplace equation.

t d th l ti t h 0

∗

[ ] o  extend the solution to h = 0
  measure the angle.
∗
∗



MOTIVATION:     Questions

Questions!Questions!
Young's relation is  valid.

defined as B C for YL equation
macroscopically

θ
•
•

√
√  defined as B.C. for YL equation.

   is measured intersecting YL with solid.
o

o

θ
θ

•

•
√
√

 Where is located on the vapor/liquid interface?oθ•



Fluid Wedge: 3-region model



3-Region Model:   Characteristic 
Film ThicknessesFilm Thicknesses

310h 3

8

10
3. 10

C

t

h m
h m

−

−

∼
∼

1010mh m−∼���	��


m

t

h
h

ε =

3 210 10ε − −−∼



Molecular region: DerjaguinMolecular region: 

[ ] [ ]6 6

j g

specific interfacial free energyVLg =

( )
[ ] [ ]6 6

36π
−

= −Π =VL LL SLdg A Ah
dh h

[ ] [ ] 2

3
VL md g h

d h h
σ=
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m
A Ah

π σ
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21 h⎡ ⎤⎛ ⎞( ) 11
2

m
VL

hg h
h

σ
⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

9Note:     0.995 when 10VLg h mσ −≈ =



Transition Region: Null Curvature Point

( )2 CH g h hσ ρ= −Π− −

2
Augmented

cos h h hd θ
⎧
⎪

( )C

3 2 Young-Laplace

equation

cos m C

C

h h hd
d h h L

θ − ⎪− = − ⎨
⎪
⎩

2

3 2 1m C th h h
h L h

⎛ ⎞
= −⎜ ⎟

⎝ ⎠At the null curvature point; h = ht , 2H = 0

/ 1h h
2 2

3 h L

3 2
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/ 1�t Ch h 3 = m C
t

C

h Lh
h

Since



Transition region: Location of θTransition region:  Location of θο
2

3 2

cos m Ch h hd
d h h L

θ −
− = −

2

2cos 1
2

C
o

h
L

θ = −

 0CBC h h θ= ⇒ =

3 2
Cd h h L 2 CL
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2 2 2

m m
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cos cos 2 1 cos
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θ θ θ
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Transition region: Location of θ0

Where, on the vapor/liquid interface, is θo to be found?

23cos cos
2t oθ θ ε− ≅

23
2sino tθ θ ε

θ
≅ +

⎧

o2sinθ

Nowhere!
since    

for all  on interface
o tθ θ θ

θ
> >⎧

⎨
⎩

( )2But:      to   Oo tθ θ ε≅



Numerical Integration of FAYL equationNumerical Integration of FAYL equation

HEPTANE ON PTFE

*Continuous line: YL solution; Dotted line: FAYL solution



CAPILLARY RISE: MACROSC0PIC APPROACH

2H g yσ ρ= g yρ

McNutt and Andes, J. of Chemical 
Physics (1969)Physics (1969)
Legendre transformation

2 2
2

2

sin2
1 sinC

d y
y Y yd y L Y
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θ

⎫= − = ⎪ − = = ⇐ =⎬
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2 2 2
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2 2
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y Y
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y

g y Y
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ρ
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( )22 2
0sin 1 1 cos / 2

2 2
o o

o o o
g y Y Y Yρθ θ
σ

= − = − ⇒ = −



Capillary Rise:  Molecular Approach

{
2

3

cos m
o S

hd g y at h hθ ρ θ θ− = + = ={3 o Sy
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2 Shh y
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22 22 2 2 2
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2

m
o S S o o
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hY Y Y Y
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Molecular region: Further AnalysisMolecular region:  Further Analysis

( )cos
VL

dg h
d h

θ
= −Π

( , )VLdg h
d h

θ=−Π

cos ln cosVL
VL VL

d g dg g C
d h d h

θ θ= − ⇒ =− +
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21But: 1 mhg h σ
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( )But: 1
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Molecular region:
910h m−<

42

0
1cos cos ln 1 m mh hO

h h
θ θ

⎡ ⎤ ⎛ ⎞⎛ ⎞= − − +⎢ ⎥ ⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥

[ ] [ ]6 6A A− 0 2 Lh h
⎢ ⎥ ⎜ ⎟⎜ ⎟

⎝ ⎠⎢ ⎥ ⎝ ⎠⎣ ⎦
2

6
LL SL

m
A Ah

π σ
=

( )Gives  , , in molecular region.

Proceed down to = 0!

m oh hθ θ θ

θ

∗ =

∗  Proceed down to =  0!
     ; 0Dh h

θ
θ

∗
= =

2
1cos 1 ln 1 mhθ

⎡ ⎤⎛ ⎞
⎢ ⎥= + − ⎜ ⎟cos 1 ln 1

2o
Dh

θ ⎢ ⎥+ ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦



Comparison with experiments:Comparison with experiments:

Alkanes σ ASL ALL D θ exper. θ comp.
10-3 N/m

SL

10-20 J
LL

10-20 J 10-10 m (deg) (deg)
Heptane 20.3 4.03 4.31 2.979 21 20.8

Octane 21.8 4.11 4.49 2.811 26 25.8

Nonane 22.9 4.18 4.66 2.656 32 31.7

Decane 23.9 4.25 4.81 2.617 35 34.5

Undecane 24.7 4.28 4.87 2.501 39 38.7

Dodecane 25.4 4.35 5.03 2.489 42 41.8

Tetradec. 26.7 4.38 5.09 2.421 44 43.7Tetradec. 26.7 4.38 5.09 2.421 44 43.7

Hexadec. 27.6 4.43 5.22 2.402 46 46.2



Conclusions:Conclusions:
( )Molecular Interactions close to the contact line

f t i⎧ surface tension
give rise to variations in 

- slope of interface

t

VLg
θ

θ θ

−⎧
⎨
⎩
⎫s.t        

                 aso
L

VL

h h
g
θ θ

σ
→ ⎫

→⎬→ ⎭

Macroscopic contact angle, ,  is
         the B.C. for solutions of YL equation at surface 0

o

h
θ

• =
 obtained by matching data points to solutions

            of  the YL equation, extending the solution to
•

  0 h =
            and measuring the angle.
         may or may not be found anywhere in the interface.•


