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Matemática - CONICET, Saavedra 15, Buenos Aires (1083), Argentina.
e-mail: gcorach@fi.uba.ar, amaestri@fi.uba.ar

Key words and phrases: Oblique projections, polar decomposition, partial isometries,
Moore-Penrose pseudoinverse.

AMS Subject Classification (2000): 47A05.

Abstract

We characterize the sets X of all products PQ, and Y of all products PQP ,
where P,Q run over all orthogonal projections and we solve the problems
arg min{‖P − Q‖ : (P,Q) ∈ Z}, for Z = X or Y. We also determine the polar
decompositions and Moore-Penrose pseudoinverses of elements of X.

1 Introduction

Let H be a Hilbert space; denote by L(H) the algebra of all bounded linear operators
on H and by P the set of all orthogonal projections in L(H): P = {P ∈ L(H) : P 2 =
P = P ∗}. The main goal of this paper is the study of the sets

X = {PQ : P, Q ∈ P}

and
Y = {PQP : P, Q ∈ P}.

In general, an operator T ∈ X admits many factorizations like PQ. Crimmins (see
comments below) proved that if T ∈ X then T = PR(T )PN(T )⊥ (hereafter, PM denotes

the orthogonal projection onto the closed subspace M, and R(B), N(B) denote the
range and nullspace of B, respectively, for every operator B ∈ L(H)). We characterize
the set XT = {(P, Q) : P, Q ∈ P, T = PQ} and prove that the distinguished pair
(PR(T ), PN(T )⊥) ∈ XT is optimal in several senses. We study a similar problem for
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each S ∈ Y: we characterize the set YS = {(P, Q) : P, Q ∈ P, S = PQP} and
find all pairs (P0, Q0) ∈ YS such that ‖P0 − Q0‖ =min{‖P − Q‖ : (P, Q) ∈ YS}.
We also study the polar decomposition of operators in X and show that the Moore-
Penrose pseudoinverse operation is a bijection between X and the set Q̃ of all closed
(unbounded) projections. This bijection explains the coincidence between the set of
all partial isometries which appear in the polar decomposition of oblique (i.e., not
necessarily orthogonal) projections and those which appear in the polar decomposition
of operators of X.

Products of orthogonal projections have attracted the attention of mathematicians
from many different areas as functional analysis, mathematical physics, signal process-
ing, numerical analysis, statistics, and so on. We refer the reader to recent surveys
by A. Galántai [12] and A. Böttcher and I. M. Spitkovsky [5], which contain a large
bibliography and several historical remarks. To their list we add a few papers which
are closer to our results. I. Vidav [28] studied the polar factors of oblique projections,
and obtained several results which we recently rediscovered in [8]. In a paper of H.
Radjavi and J. P. Williams on products of selfadjoint operators [25] there is a proof
of a theorem by T. Crimmins which characterizes the operators of X in the following
concise way: if T ∈ L(H) then T belongs to X if and only if T 2 = TT ∗T ; Crimmins
also exhibited, for such T ’s, what we call the canonical factorization T = PR(T )PN(T )⊥ .

In [27] Z. Sebestyén found a condition on an operator T defined on a subspace of H in
order to be the restriction of an orthogonal projection. We prove here that Sebestyén’s
condition is equivalent to Crimmins’. More recently, A. Arias and S. Gudder [2] stud-
ied, in the more general setting of von Neumann algebras, what they call almost sharp
effects, and which are, precisely, operators like PQP , for P, Q ∈ P . These effects play
a role in some problems of quantum mechanics. They found a characterization of the
set Y, which is very useful in our approach. It should be mentioned that in a complete
different setting, S. Nelson and M. Neumann [20] found, for matrices, a characteriza-
tion of the spectrum of elements of X. It turns out that their conditions can be easily
translated to the Arias-Gudder’s theorem. T. Oikhberg [21], [22] proved many results
on operators which can be factorized as finite products of orthogonal projections. We
close these comments by mentioning that some modern approaches to Heisenberg un-
certainty principle, like those of Donoho and Stark [10] and Havin and Jöricke [15]
(see also the survey by Folland and Sitaram [11]) are based on the compactness and
spectral properties of certain products PQ, where P and Q respectively project onto
time-limited and band-limited signals.

We describe the contents of the sections. Section 2 contains some preliminary
results. In section 3 we study some properties of operators of X and characterize the
set XT for T ∈ X, and we prove that the canonical factorization T = PR(T )PN(T )⊥

is optimal in the following senses: if T = PMPN for some closed subspaces M, N ,
then (1) R(T ) ⊆ M and N(T )⊥ ⊆ N ; (2) ‖(PM − PN )x‖ ≥ ‖(PR(T ) − PN(T )⊥)x‖
for all x ∈ H; and (3) if R(T ) is closed then ‖PR(T ) − PN(T )⊥‖ < ‖PM − PN‖ for

every other (M,N ) ∈ XT . In section 4 we start the study of the set Y, by solving
the problem arg min{‖P −Q‖ : (P, Q) ∈ YS} for each S ∈ Y. We include a theorem,
whose proof is due to T. Ando, which describes, for fixed P, Q ∈ P , the set {H ∈ P :
(PHP )2 = PQP}. Section 5 is devoted to polar decompositions of elements of X. We
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characterize the set JX (resp., X+) of isometric (resp., positive) parts of operators in
X. In particular, we prove that X = {V 2 : V ∈ JX} = Y and the map T −→ V ,
where V is the isometric part of T , is a bijection between X and JX. The situation for
the positive parts is different: using Ando’s theorem mentioned above, we parametrize,
for every S ∈ Y, the set {T ∈ X : |T | = S}. In the last section we prove that the
Moore-Penrose pseudoinverse of T ∈ X is a closed unbounded oblique projection, and
conversely. Using some results of Ota [23] on closed unbounded projections, we extend
a well-known theorem of Penrose [24] and Greville [14], who proved this result for
matrices.

2 Preliminaries

Denote Gr(H) the Grassmannian manifold of H, i.e., the set of all closed subspaces
M of H.

The Friedrichs angle between M ∈ Gr(H) and N ∈ Gr(H) is α(M,N ) ∈ [0, π/2]
whose cosine is

c(M,N ) = sup{|〈m, n〉| : m ∈M	N , ‖m‖ ≤ 1, n ∈ N 	M, ‖m‖ ≤ 1},

where M	N = M∩ (M∩N )⊥.
The Dixmier angle between M and N is α0(M,N ) ∈ [0, π/2] whose cosine is

c0(M,N ) = sup{|〈m, n〉| : m ∈M, ‖m‖ ≤ 1, n ∈ N , ‖m‖ ≤ 1}.

It is easy to see that c0(M,N ) = ‖PMPN‖; we collect several well-known facts on c
and c0. The proofs can be found in the survey by F. Deutsch [9].

Theorem 2.1. Given M,N ∈ Gr(H) the following statements hold:

1. c(M,N ) < 1 if and only if M + N is closed if and only if R(PM(I − PN )) is
closed;

2. c0(M,N ) < 1 ⇐⇒ M∩N = {0} and M+N is closed;

3. c(M,N ) = c(M⊥,N⊥), i.e., the Friedrichs angle between M and N coincides
with that between M⊥ and N⊥; in particular, M + N is closed if and only if
M⊥ +N⊥ is closed.

We will use the well known Krein-Krasnoselskii-Milman equality

‖P −Q‖ = max{‖P (I −Q)‖, ‖Q(I − P )‖}, (1)

valid for all P, Q ∈ P (see [19], [1], [18]).

Proposition 2.2. Given P, Q ∈ P, there are four possible cases for the norms involved
in Krein-Krasnoselskii-Milman equality, namely:

1. ‖P −Q‖ < 1 and, then, ‖P (I −Q)‖ = ‖Q(I − P )‖ < 1;
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2. ‖P −Q‖ = ‖P (I −Q)‖ = 1 and ‖Q(I − P )‖ < 1;

3. ‖P −Q‖ = ‖Q(I − P )‖ = 1 and ‖P (I −Q)‖ < 1;

4. ‖P −Q‖ = ‖Q(I − P )‖ = ‖P (I −Q)‖ = 1.

In terms of the ranges and nullspaces of P, Q, the four possibilities read as follows:

1. R(P )+̇N(Q) = N(P )+̇R(Q) = H and the angles of both decompositions coincide;

2. R(P ) + N(Q) = H, the sum is not direct and N(P ) + R(Q) is a proper closed
subspace;

3. N(P ) + R(Q) = H, the sum is not direct and R(P ) + N(Q) is a proper closed
subspace;

4. N(P ) + R(Q) and R(P ) + N(Q) are non closed dense subspaces of H.

Recall the definition of the Moore-Penrose pseudoinverse T † of T ∈ L(H). This is
an operator with domain R(T ) ⊕ R(T )⊥ defined by T †(Tx) = x if x ∈ N(T )⊥ and
T †|R(T )⊥ = 0. The reader is referred to the original paper by Penrose [24] or the book
by Ben-Israel and Greville [4] for properties and theorems on T †. We will use without
explicit mention that T † is bounded if and only if R(T ) is closed. Notice that T †T and
TT † behaves in a different way: the first one is always bounded; indeed, it coincides
with PN(T )⊥ ; however, the second is defined, and behaves like a projection, on the
domain of T †.

3 The set of products PQ

In this section we study the sets

X = {PQ : P, Q ∈ P}, Xcr = {T ∈ X : R(T ) is closed}.

We start with a theorem that gives two alternative characterizations of the ele-
ments of X. The first one is due to T. Crimmins ( item 2), see Radjavi and Williams
[25], Theorem 8. The second (item 3) is a rewriting of a result by Z. Sebestyén for
suboperators, see [27], Theorem 1.

Theorem 3.1. For any T ∈ L(H), the following assertions are equivalent:

1. T ∈ X;

2. T 2 = TT ∗T ;

3. ‖Tx‖2 = 〈Tx, x〉, for all x ∈ N(T )⊥.

In this case, T = PR(T )PN(T )⊥ .
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We will refer to the factorization obtained in the above theorem as the canonical
factorization of T .

Proof. 1 → 3: If T ∈ X there exist P, Q ∈ P such that T = PQ. Observe that
N(Q) ⊆ N(T ) so that N(T )⊥ ⊆ N(Q)⊥ and then QPN(T )⊥ = PN(T )⊥ , or Qx = x, for
all x ∈ N(T )⊥. Therefore, if x ∈ N(T )⊥, then ‖Tx‖2 = 〈T ∗Tx, x〉 = 〈QPQx, x〉 =
〈PQx, Qx〉 = 〈Tx, x〉, as wanted.

3→ 2: If ‖Tx‖2 = 〈Tx, x〉, for all x ∈ N(T )⊥, then 〈Ty, Ty〉 = 〈Ty, PN(T )⊥y〉, for
all y ∈ H, because TPN(T )⊥ = T . Hence 〈T ∗Ty, y〉 = 〈PN(T )⊥Ty, y〉 for all y ∈ H,
or T ∗T = PN(T )⊥T = T †T 2. Therefore, multiplying by T both sides of this equal-

ity, TT ∗T = TT †T 2. But observe that TT † is the orthogonal projection onto R(T ),
restricted to R(T ), and R(T 2) ⊆ R(T ). Then TT ∗T = T 2.

2 → 1: If TT ∗T = T 2 then multiplying by (the possibly unbounded operator)
T † both sides of this equality, we get PN(T )⊥T ∗T = PN(T )⊥T , and taking adjoints

T ∗TPN(T )⊥ = T ∗PN(T )⊥ . Multiplying by T ∗†, we get PN(T ∗)⊥TPN(T )⊥ = PN(T ∗)⊥PN(T )⊥ .

But using that N(T ∗)⊥ = R(T ) and that T = PR(T )TPN(T )⊥ , it follows the equality
T = PR(T )PN(T )⊥ so that in particular T ∈ X.

It is obvious that T ∗ ∈ X if T ∈ X. By the formula T = PR(T )PN(T )⊥ , it is clear

that T is determined by the closed subspaces R(T ) and N(T ).

Theorem 3.2. Every T ∈ X has the following properties:

1. R(T ) ∩N(T ) = {0};

2. R(T )+̇N(T ) is dense;

3. R(T )+̇N(T ) = H if and only if R(T ) is closed.

Proof. 1. Let x ∈ R(T ) ∩ N(T ). Then PN(T )⊥x = 0 and x = PR(T )x. Therefore,

0 = PN(T )⊥x = PN(T )⊥PR(T )x = T ∗x so that x ∈ N(T ∗) = R(T )⊥. Thus, x ∈
R(T ) ∩R(T )⊥ = {0}.

2. If T ∈ X then also T ∗ ∈ X. Applying 1 to T ∗ we get N(T ∗) ∩ R(T ∗) = {0}, or
R(T )⊥ ∩ N(T )⊥ = {0}. Taking orthogonal complements we get that R(T )+̇N(T ) is
dense.

3. Recall from Theorem 2.1 that M + N⊥ is closed if and only if R(PMPN ) is
closed and apply this to M = R(T ), N = N(T )⊥. Since T = PMPN , from 2 we get
the result.

Corollary 3.3. For any P , Q ∈ P there exists only two alternatives:

1. R(PQ) is closed and R(PQ)+̇N(PQ) = H; or

2. R(PQ) is not closed and R(PQ)+̇N(PQ) is a proper dense subspace of H.

The next result is a reformulation of the canonical factorization property.

5



Theorem 3.4. Let T ∈ X. There exists a factorization T = PMPN such that
M+̇N⊥ = H if and only if R(T ) is closed. In this case, there exists only one
such factorization, namely T = PR(T )PN(T )⊥, which corresponds to the decomposition
H = R(T )+̇N(T ).

Proof. Observe that, by Theorem 3.2, if R(T ) is closed then R(T )+̇N(T ) = H and
T = PR(T )PN(T )⊥ .

Conversely, if T = PMPN and M+̇N⊥ = H, then in particular M+N⊥ is closed
and, therefore, R(T ) = R(PMPN ) is closed (see [6] or [16]). The uniqueness follows
from the general lemma below.

Lemma 3.5. If M+̇N = H, M1+̇N1 = H, M ⊇ M1 and N ⊇ N1 then M = M1

and N = N1.

Proof. Straightforward.

Remark 3.6. If P, Q ∈ P and R(PQ) is closed, Theorem 3.4 and Corollary 3.3 do
not imply that R(P )+̇N(Q) = H; however, it does imply that the operator T = PQ
admits a factorization T = P ′Q′ such that R(P ′)+̇N(Q′) = H.

Our next result describes all factorizations T = PMPN for a given T ∈ X and
shows that the canonical factorization is optimal, in the following two senses: (1) if
T = PMPN then M ⊇ R(T ) and N ⊇ N(T )⊥ or equivalently PM ≥ PR(T ) and

PN ≥ PN(T )⊥ ; (2) if T = PMPN then ‖(PM − PN )x‖ ≥ ‖(PR(T ) − PN(T )⊥)x‖, for all
x ∈ H.

Theorem 3.7. Let T ∈ X and M, N ∈ Gr(H). Then T = PMPN if and only if there
exist M1, N1 ∈ Gr(H) such that

1. M = R(T )⊕M1;

2. N = N(T )⊥ ⊕N1;

3. M1 ⊥ N1;

4. M1 ⊕N1 ⊆ R(T )⊥ ∩N(T ).

Proof. By Crimmins’ theorem, it holds T = PR(T )PN(T )⊥ . If T = PMPN then,

in particular, R(T ) ⊆ M and, since M is closed, R(T ) ⊆ M. Analogously, N⊥ =
N(PN ) ⊆ N(T ) and therefore N ⊇ N(T )⊥. Thus, M1 := M	 R(T ) and N1 :=
N 	 N(T )⊥ are well-defined and items 1 and 2 are verified. Also, M1 ⊆ R(T )⊥ and
N1 ⊆ N(T ).

Now we compute T = PMPN , using the decompositions 1 and 2, and we get

PR(T )PN(T )⊥ = T = PMPN = (PR(T ) + PM1)(PN(T )⊥ + PN1) =

= PR(T )PN(T )⊥ + PR(T )PN1 + PM1PN(T )⊥ + PM1PN1
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and, after cancellation,

PR(T )PN1 + PM1PN(T )⊥ + PM1PN1 = 0 (2)

By multiplying at left equation (2) by PR(T ), we get PR(T )PN1 = 0, because M1 ⊥
R(T ). From here we deduce also that N1 ⊆ R(T )⊥.

We have now
PM1PN(T )⊥ + PM1PN1 = 0 (3)

and, by multiplying at right by PN(T )⊥ we get

PM1PN(T )⊥ = 0 (4)

because N1 ⊥ N(T )⊥; thus,
PM1PN1 = 0 (5)

and also M1 ⊆ N(T ). This completes the first part.
Conversely, if M1, N1 satisfies 1-4 then

PMPN = (PR(T ) + PM1)(PN(T )⊥ + PN1) = PR(T )PN(T )⊥ = T,

because all other products vanish.

Corollary 3.8. Let T ∈ X. Then T admits a unique factorization T = PMPN if and
only if R(T )⊥ ∩N(T ) = {0}.

Corollary 3.9. Let T ∈ X. If T = PMPN then ‖(PM−PN )x‖ ≥ ‖(PR(T )−PN(T )⊥)x‖
for all x ∈ H.

Proof. In fact, PM−PN = (PR(T )−PN(T )⊥) + (PM1 −PN1) and the images of both

terms are orthogonal so ‖PMx− PNx‖2 = ‖PR(T )x− PN(T )⊥x‖2 + ‖PM1x− PN1x‖2.

In what follows, for each T ∈ X denote XT := {(P, Q) : T = PQ}.

Theorem 3.10. Let T ∈ X. If R(T ) is not closed, then ‖P −Q‖ = 1 for all (P, Q) ∈
XT . If R(T ) is closed, then ‖PR(T ) − PN(T )⊥‖ < 1 and ‖P − Q‖ = 1 for every other
(P, Q) ∈ XT .

Proof. If R(T ) is not closed, then by Theorem 3.2, it follows that R(T )+̇N(T ) is a
dense proper subspace of H and, therefore, by (1) and Theorem 2.1 ‖PR(T )−PN(T )⊥‖ =

1; by the corollary above it follows that ‖P −Q‖ = 1 for all (P, Q) ∈ XT .
If R(T ) is closed, then H = R(T )+̇N(T ) then, by Theorem 2.1, c(R(T ), N(T )) =

c0(R(T ), N(T )) = ‖PR(T )PN(T )‖ = ‖PR(T )(I −PN(T )⊥)‖ < 1. Also, T ∗ has closed range
and in the same way, we obtain that ‖PN(T )⊥PR(T )⊥‖ < 1, but ‖PN(T )⊥PR(T )⊥‖ =
‖(I − PR(T ))PN(T )⊥‖. Applying (1), we get ‖PR(T ) − PN(T )⊥‖ < 1 .

Finally, according to Theorem 3.4, it follows that (PR(T ), PN(T )⊥) is the only element
of XT with that property. Thus, if (P, Q) is another element of XT then R(P )+N(Q) =
H but the sum is not direct. Therefore ‖P −Q‖ = 1.
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4 The set of products PQP

Denote Y = {PQP : P, Q ∈ P} and for S ∈ Y denote YS = {(P, Q) : S = PQP}.
This section is devoted to the study of these sets, following the lines of the preceding
section. First, we describe the set YS for a given S ∈ Y.

Proposition 4.1. The set YS is the disjoint union of all sets XT , where T ∈ X satisfies
TT ∗ = S.

Proof. If (P, Q) ∈ YS, then S = PQP , T := PQ ∈ X and (P, Q) ∈ XT . Conversely,
if (P, Q) ∈ XT for some T ∈ X such that S = TT ∗, then S = PQP , i.e., (P, Q) ∈ YS

The set Y was completely described by Arias and Gudder [2]. They proved that a
positive operator A ∈ L(H) belongs to Y if and only if A ≤ I and dimR(A− A2) ≤
dimN(A). (Indeed, they proved a more complete result, valid for von Neumann alge-
bras; in the case of factors, their result has the form we mentioned.)

Given S ∈ Y, we compute the norm ‖P −Q‖ for every (P, Q) ∈ YS.

Theorem 4.2. Let S ∈ Y. Then:

1. If R(S) is not closed then ‖P −Q‖ = 1 for every pair (P, Q) ∈ YS.

2. If R(S) is closed, then for each pair (P, Q) ∈ YS and T = PQ the following
alternative holds: either T = PQ is not the canonical factorization of T , and then
‖P −Q‖ = 1, or P = PR(T ) and Q = PN(T )⊥, in which case ‖PR(T )−PN(T )⊥‖ is a
constant < 1 which is independent of the factorization S = TT ∗; more precisely,
‖PR(T ) − PN(T )⊥‖ = ‖PR(S) − S‖1/2.

Proof. Consider S ∈ Y. 1) If R(S) is not closed then for every T ∈ X such
that TT ∗ = S, it holds that R(T ) is not closed; by Theorem 3.10, it follows that
‖P − Q‖ = 1 for every pair (P, Q) ∈ XT and so, by Proposition 4.1, the same is true
for every (P, Q) ∈ YS.

2)If R(S) is closed, fix T ∈ X such that TT ∗ = S. By Theorem 3.10, ‖P −Q‖ = 1
for every pair (P, Q) ∈ XT except for the canonical pair (PR(T ), PN(T )⊥), for which
‖PR(T ) − PN(T )⊥‖ < 1. Consider another L ∈ X such that LL∗ = S. We claim that
‖PR(T ) − PN(T )⊥‖ = ‖PR(L) − PN(L)⊥‖ < 1. In order to prove this assertion, we make a
series of remarks.

1. Observe that R(S) = R(T ) = R(L); denote P = PR(S).

2. If E, F ∈ P then from 1 of Propostion 2.2, it easily follows that if ‖E − F‖ < 1
then ‖E − F‖ = ‖E(I − F )‖ = ‖(I − E)F‖.

3. Since ‖P − PN(T )⊥‖ < 1, then ‖P − PN(T )⊥‖ = ‖P (I − PN(T )⊥‖ = ‖PPN(T )‖.

4. Observe that S = TT ∗ = PPN(T )⊥P = P −PPN(T )P , so that PPN(T )P = P −S.

Thus, by items (3) and (4), it follows that ‖P − PN(T )⊥‖2 = ‖PPN(T )‖2 =
= ‖PPN(T )P‖ = ‖P − S‖.
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Remark 4.3. The proof above shows that, if S ∈ Y has a closed range, then the
set YS is the union of two disjoint subsets, say W = {(P, Q) ∈ YS : R(P )+̇N(Q) =
H} and Z = {(P, Q) ∈ YS : R(P ) + N(Q) = H and R(P ) ∩ N(Q) 6= {0}}. The
functional (P, Q) → ‖P −Q‖ takes the constant values ‖PR(S) − S‖1/2 on W and 1 on
Z, respectively.

The following is a technical result which will be used later on:

Lemma 4.4. Let P ∈ P and 0 ≤ A ≤ P , then the following identities hold:

R(P − A) = R(P − A2) = R(P − A1/2)

and
R(A− A2)) = R(A(P − A)) = R(PA − A).

Proof. Observe that the operators A, P −A, P −A2 and P −A1/2 are positive and
commute because of the monotonicity of the positive square root; and the same holds
with PA instead of P .

Also, from (P −A2) = (P +A)(P −A) we get N(P −A2) = N(P −A): N(P −A) ⊆
N(P − A2); conversely if (P − A2)x = 0 then (P − A)x ∈ N(P + A) ∩ R(A) =
N(P )∩R(A) = {0} because N(P ) ⊆ N(A). Taking orthogonal complement we obtain

that R(P − A2) = R(P − A). With a similar argument, R(P − A1/2) = R(P − A).
Observe that PA = A = AP so A−A2 = A(P −A). To prove that R(A(P − A)) =

R(PA − A), observe that N(A(P − A)) = N(A(PA − A)) = N(PA − A) and take
orthogonal complement.

Theorem 4.5. (Ando) Let P and Q be orthogonal projections, then the matrix repre-
sentation of Q in terms of P is given by

Q =

(
A A1/2(P − A)1/2U∗

UA1/2(P − A)1/2 U(P − A)U∗ + Q̂

)
, (6)

where A = PQP , U is a partial isometry with initial space R(A(P − A)) and final
space W ⊆ N(P ) and Q̂ is an orthogonal projection with R(Q̂) ⊂ N(P )	R(U).

Conversely, given P ∈ P, 0 ≤ A ≤ P such that dim R(A(P − A)) ≤ dim N(P ), a
partial isometry U with initial space R(A(P − A)) and final space W ⊆ N(P ) and an
orthogonal projection Q̂ with R(Q̂) ⊆ N(P )	R(U) the right-hand side of (6) gives an
orthogonal projection.

Proof. Given P, Q ∈ P , consider the matrix representation of Q in terms of P :

Q =

(
Q11 Q12

Q21 Q22

)
Write A := Q11 and B := Q22. Since Q ≥ 0, it follows that

0 ≤ A ≤ P, 0 ≤ B ≤ I − P and Q∗
12 = Q21.

9



Since Q2 = Q, we also have

Q12Q21 = A(P − A) and AQ12 + Q12B = Q12 (7)

Since Q∗
12 = Q21, from the first equality we get

|Q21|2 = A(P − A) or |Q21| = A1/2(P − A)1/2,

so, we can conclude that there is an isometry U from R(A(P − A)) onto W ⊆ N(P )
such that

Q21 = UA1/2(P − A)1/2 and Q12 = A1/2(P − A)1/2U∗.

But applying Lemma 4.4, R(A(P − A)) = R(PA − A).
It follows from the second identity of (7) that

AA1/2(P − A)1/2U∗ + A1/2(P − A)1/2U∗B = A1/2(P − A)1/2U∗.

Observe that A1/2(P − A)1/2 = A1/2(P − A)1/2PA, by Lemma 4.4; then

0 = A1/2(P − A)1/2[U∗B − (PA − A)U∗] = A1/2(P − A)1/2[U∗B − (PA − A)U∗];

since R(U∗B − (PA − A)U∗) ⊆ R(A(P − A)), then

U∗B = (PA − A)U∗ and hence UU∗B = U(PA − A)U∗ = BUU∗.

Since UU∗ = PU is an orthogonal projection and PUB = BPU , we get that

B = U(PA − A)U∗ + Q̂

where Q̂ is an orthogonal projection with R(Q̂) ⊆ N(P )	R(U). Observe that UP =
U(PA + PR(P )	R(A)) = UPA, because R(P )	R(A) ⊆ N(A) ⊆ N(PA − A) = N(U).

Then B = U(P − A)U∗ + Q̂. Therefore we arrive at (6).
It is immediate to see that for 0 ≤ A ≤ P satisfying the dimension condition, a

partial isometry U with initial space R(A(P − A)) and final space W ⊂ N(P ) and an
orthogonal projection Q̂ with R(Q̂) ⊆ N(P ) 	 R(U) the right-hand side of (6) gives
an orthogonal projection. This completes the proof.

As a consequence we get the following dilation result, that recovers the result [2]:

Corollary 4.6. Given a positive contraction A ∈ L(H), there exists Q ∈ P such that
A = PAQPA if and only if dim R(A− A2)) ≤ dim N(A).

The next result, due to T. Ando, will be useful in a characterization of the set Y

by means of the polar decomposition (see next section).

Corollary 4.7. (Ando) Given P, Q ∈ P, there exists H ∈ P which is a solution of

(PQP )1/2 = PXP. (8)

Moreover, all the orthogonal projections which are solutions of (8) are parametrized as

H =

(
A A1/2(P − A)1/2U∗

UA1/2(P − A)1/2 U(P − A)U∗ + Ĥ

)
where A = (PQP )1/2, U is a partial isometry with initial space R(A(P − A)) and final
space W ⊆ N(P ) and Ĥ is an orthogonal projection with R(Ĥ) ⊆ N(P )	R(U).
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Proof. Let A = PQP ; by the proof of the above theorem, dim R(PA − A) ≤
dim N(P ). Consider A1/2, then 0 ≤ A1/2 ≤ P . Therefore, applying Lemma 4.4,

dim R(PA1/2 − A1/2) = dim R(PA − A) ≤ dim N(P ). Finally, applying Theorem 4.5,
the proof is complete.

Remark 4.8. Observe that the above theorem contains an alternative proof of the
result by Arias and Gudder [2] mentioned before, in the setting of Hilbert spaces.

In [20] Nelson and Neumann proved that a set {λ1, ... , λn} is the spectrum of a n×n
matrix B = PQ, where P, Q ∈ P, if and only if ]{i : 0 < λi < 1} ≤ ]{i : λi = 0}.
Since the spectrum of PQ coincides with that of PQP it follows that the result by
Nelson and Neumann is the finite-dimensional version of the theorem of Arias and
Gudder.

5 Polar decomposition of PQ

The polar decomposition of an operator C ∈ L(H) is a factorization C = VC |C|, where
VC is a partial isometry, |C| = (C∗C)1/2 and N(VC) = N(C). It can be shown that
this factorization exists and is unique [26]. Morever, R(VC) = R(C), VCV ∗

C = PR(C),

V ∗
CVC = PN(C)⊥ and C = |C∗|VC . In what follows, VC will be called the isometric part

of C and |C| the positive part of C.
Given a subset A of L(H) we consider the set A+ (resp., JA) which consists of all

positive (resp., isometric) parts of members of A.
In [8] we characterized Q+ (notice that in [8], we used the more cumbersome nota-

tion L(H)+
Q) and JQ. We apply now the results above and those of [8] to characterize

X+, X+
cr, JX and JXcr .

In [8] there is a characterization of the set JQ of all partial isometries of oblique
projections. More precisely, it is proven that, for a given V ∈ J , there exists E ∈ Q
with polar decomposition E = V |E| if and only if V PR(V ) is a positive operator with
range R(V ). In other terms, the restriction of V PR(V ) to R(V ) is a positive invert-
ible operator in L(R(V )). The next result proves that the squares of such isometries
exhaustes the set Xcr.

Theorem 5.1.
Xcr = {V 2 : V ∈ JQ}.

Proof. By [14], T ∈ Xcr if and only if T † ∈ Q so that we only need to prove that,
if E ∈ Q has polar decomposition E = V |E| then E† = V ∗2, and use the general
fact that V ∗ is the partial isometry of E∗ in its polar decomposition. For this, observe
that N(E) = N(V ) and R(E) = R(V ) so that E† = PN(E)⊥PR(E) = PN(V )⊥PR(V ) =
(V ∗V )(V V ∗). By the characterization of JQ, it holds V PR(V ) = (V PR(V ))

∗ = PR(V )V
∗,

so that V 2V ∗ = V V ∗2. Then, E† = V ∗V V ∗2. But, since V ∗ is the Moore-Penrose
inverse of V , it holds V ∗V V ∗ = V ∗. Thus, E† = V ∗2. This proves the theorem.

This result will be extended to the whole X, after the characterization of the set
JX in the next theorem.
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Let T ∈ X such that T = PQ is the canonical factorization of T . Then the left
polar decomposition of T has the form

T = (PQP )1/2VT . (9)

Now we characterize the set JX = {V ∈ J : there exists T ∈ X such that V = VT},
i.e., the partial isometries of the polar decompositions of elements of X.

Theorem 5.2. Given V ∈ J , then V ∈ JX if and only if V 2V ∗ ≥ 0 and R(V 2V ∗) =

R(V ). In this case, it holds R(V )+̇N(V ) = H

Proof. Let V ∈ JX, then there exists T ∈ X such that V = VT . Let T = PQ be
the canonical factorization of T. Recall that P = PR(T ) = PR(V ) and, by the definition

of the polar decomposition, R(V ) = R(T ). Therefore, V 2V ∗ = V (V V ∗) = V P. But,

from (9) we get that (PQP )1/2†T = PV = V so that V = (PQP )1/2†PQ and then,

V P = (PQP )1/2†PQP = (PQP )1/2. Therefore

V P = |T ∗| ∈ L(H)+.

Moreover, R(V 2V ∗) = R(V P ) = R(|T ∗|) = R(T ) so that R(V 2V ∗) = R(V ).
Conversely, suppose that V ∈ J satisfies that V 2V ∗ = V PR(V ) ≥ 0 and that

R(V PR(V )) = R(V ). Let A = V PR(V ) and T = PR(V )PN(V )⊥ ∈ X. Since A is positive,

in particular A = V 2V ∗ = V V ∗2. Then T = (V V ∗)(V ∗V ) = V 2V ∗V = V PR(V )V (=
V 2) = AV and this is the polar decomposition of T . In fact, observe that TT ∗ =
AV V ∗A = APR(V )A = A2 so that |T ∗| = A; also V is a partial isometry with final

space R(V ) = R(V 2V ∗) = R(A) = R(T ) and nullspace N(V ) = N(T ): N(V ) ⊆ N(T )
and if Tx = 0 then AV x = 0; therefore V x ∈ N(A) ∩R(V ) = N(A) ∩R(A) = {0}.

The last assertion, namely that H = R(V ) + N(V ) = H if V ∈ JX, follows directly
from Theorem 3.2, by observing that R(V ) = R(T ) and N(V ) = N(T ).

Given T ∈ X with polar decomposition T = |T ∗|V then T = PR(V )PN(V )⊥ is the
canonical factorization of T . By the previous results, it also holds that R(T ) is closed
if and only if R(V )+̇N(V ) = H.

We have proved that if T = V 2 for a given V ∈ JX, then T ∈ X and V is the partial
isometry of T . Therefore:

Corollary 5.3. Consider the map α : JX −→ L(H), α(V ) = V 2. Then α is a bijection
from JX onto X. In particular, X = {V 2 : V ∈ JX}.

Proof. If V ∈ JX then, by Theorem 5.2, V 2V ∗ ≥ 0; in particular, V 2V ∗ = V V ∗2.
Then T = (V V ∗)(V ∗V ) ∈ X; but T = V V ∗2V = V 2V ∗V = V 2, so that α(V ) = V 2 ∈
X. Let T ∈ X; if V is the partial isometry of T then, by Theorem 5.2 again, we get
V 2V ∗ ≥ 0 and T = PR(T )PN(T ) = (V V ∗)(V ∗V ) = V V ∗2V = V 2V ∗V = V 2 = α(V ).

Thus, the isometric part of T is V , so that α is surjective and α−1(T ) = V .

The last Corollary extends our previous results Theorem 5.1 and [8], Theorem 5.2.
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Theorem 5.4. Let V ∈ J . Then V ∈ JX if and only if V has a matrix representation,
in terms of the decomposition H = R(V )⊕R(V )⊥, of the type

V =

(
A (P − A2)1/2U
0 0

)
(10)

where P = PV , 0 ≤ A ≤ P , R(A) = R(V ), dim R(P − A2) ≤ dim R(V )⊥ and U is a
partial isometry with initial space contained in R(V )⊥ and final space R(P − A2).

Proof. If V ∈ JX then there exists T ∈ X such that V = VT . In the same way as in
Theorem 5.2, if T = PQ is the canonical factorization of T then

V P = (PQP )1/2 = A,

where R(A) = R(V ) and, by Theorem 5 and Corollary 6 of [2], A satisfies that 0 ≤
A ≤ P and dim R(P − A) ≤ dim N(P ). By Lemma 4.4, dim R(P − A2) ≤ dim N(P ).

Therefore

V =

(
A V12

0 0

)
is the matrix of V . Since V V ∗ = A2 + V12V

∗
12 = P , then |V ∗

12| = (P − A2)1/2, so
that V12 = (P −A2)1/2U , where U is a partial isometry with initial space contained in
R(V )⊥ = N(A) and final space R(P − A2).

Conversely, if V has the matrix representation (10), with A and U satisfying the
hypothesis of the theorem, then V V ∗ = A2+P−A2 = P , so that V ∈ J , V P = A ≥ 0,
R(A) = R(V ) by hypothesis. Therefore, applying Theorem 5.2, it follows that V ∈ JX.

We end this section with a characterization of the set

X+ = {A ∈ L(H)+ : there exists T ∈ X such that A = |T ∗|},

i.e., the positive parts of the polar decompositions of elements of X.

Proposition 5.5.
X+ = Y.

Proof. Let A ∈ X+. Then there exists T ∈ X such that A = (TT ∗)1/2. If T = PQ is
the canonical factorization of T , then A = (PQP )1/2 and applying Corollary 4.7 there
exists H ∈ P such that A = PHP so that A ∈ Y.

Conversely, let A ∈ Y. Then there exists P, Q ∈ P such that A = PQP and we can
assume that P = PA. By Theorem 5 and Corollary 6 of [2], it follows that 0 ≤ A ≤ P ,
dim R(P − A) ≤ dim N(A) and, by Lemma 4.4, dim R(P − A) = dim R(P − A2). In
this case P and A satisfy the conditions of Theorem 5.4 and we can construct an
operator T ∈ X; more precisely, consider T = AV with

V =

(
A (P − A2)1/2U
0 0

)
where U is a partial isometry with initial space contained in R(V )⊥ and final space
R(P − A2). Then TT ∗ = A2 or |T ∗| = A. Therefore A ∈ X+.
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Corollary 5.6. Consider the map β : X −→ Y, β(T ) = |T ∗|. Then the fibre of A ∈ Y

is given by

β−1({A}) = {T ∈ X : T =

(
A2 A(P − A2)1/2U
0 0

)
}

where P = PR(A), U is a partial isometry with initial space contained in N(A) and final

space R(P − A2).

Proof. Apply Proposition 5.5.

6 On the Moore-Penrose pseudoinverse of PQ

As mentioned in the Introduction, Penrose [24] and Greville [14] proved that the Moore-
Penrose pseudoinverse of an oblique matrix is a product of two orthogonal projections,
and conversely. A proof of the next result, which extends their theorem to closed range
operators in X, appears in [8].

Theorem 6.1. Let T ∈ L(H). Then T ∈ Xcr if and only if there exists E ∈ Q such
that T = E†. In symbols, Xcr = Q†.

The generalization of Penrose-Greville theorem for operators T ∈ X with non-closed
range forces the consideration of a certain class of unbounded projections. We refer the
reader to the paper [23] for the properties of those projections which naturally appear
in this context. In what follows, we consider the set Q̃ of closed unbounded projections,
i.e., operators E with a dense domain D(E) such that D(E) = N(E)+̇R(E), N(E) is
closed, R(E) is closed in H and E(Ex) = Ex for all x ∈ D(E).

Theorem 6.2. If T ∈ X then there exists a closed unbounded projection E : D(E) −→
H such that T = E†. Conversely, if E is any closed unbounded projection then there
exists an element T ∈ X such that E† = T . Moreover, the map T −→ T † from X onto
Q̃ is a bijection.

Proof. Suppose that T ∈ X. Then (see, e.g., [4]) E = T † is an unbounded pseudoin-
verse of T with dense domain D(E) = R(T ) ⊕ R(T )⊥, R(E) = N(T )⊥ and E verifies
TET = T , in H, and ETE = E in D(E). Since R(E) = N(T )⊥ we get

PN(T )⊥Ex = Ex, ∀x ∈ D(E). (11)

It also holds that
EPR(T )x = Ex, ∀x ∈ D(E). (12)

In fact, if x ∈ D(E) then Ex = E(PR(T )x + PR(T )⊥x) = EPR(T )x because PR(T )x ∈
R(T ) and R(T )⊥ = N(E).

Observe also that R(E) = N(T )⊥ ⊆ D(E): if x ∈ N(T )⊥ then x = PR(T )x +

PR(T )⊥x = PR(T )PN(T )⊥x + PR(T )⊥x = Tx + PR(T )⊥x so that x ∈ D(E). Therefore E2

is well defined in D(E).
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Finally, for x ∈ D(E), we get

E2x = EPN(T )⊥Ex = EPR(T )PN(T )⊥Ex = ETEx = Ex.

Observe that the first equality follows from (11) and the second from (12), because
PN(T )⊥Ex ∈ D(E). We have proved that E2 = E in D(E); R(E) = N(T )⊥ and
N(E) = R(T )⊥, both closed subspaces. This proves that E is an unbounded closed
projection, see Lemma 3.5 of [23], namely E = PN(T )⊥//R(T )⊥ .

Conversely, suppose that M and N are closed subspaces such that M+̇N is a
dense subspace of H. Let E : M+̇N −→ M be the (unbounded) projection with
domain D(E) = M+̇N onto M with nullspace N . We will show that the unbounded
operator E is the pseudoinverse of an element of X, namely, E = (PN⊥PM)†: in fact,
PMEx = Ex, for every x ∈ D(E) and EPM = PM, in H, because R(E) = M. Also,
R(PN⊥PM) = R(PM−PNPM) ⊆M+̇N ⊆ D(E). Therefore EPN⊥PM is well defined
for every x ∈ H and EPN⊥PM = E(I − PN )PM = PM, then

EPN⊥PM = PM. (13)

Consider x ∈ R(PN⊥PM)(⊆ D(E)) then x = PN⊥PMy, for y ∈ H. Using equation
(13) we get PN⊥PMEx = PN⊥PME(PN⊥PMy) = PN⊥PMy = x, then

PN⊥PMEx = x,

for every x ∈ R(PN⊥PM).
On the other side, if x ∈ R(PN⊥PM)⊥ = N(PMPN⊥) = (N⊥ ∩M) ⊕ N ⊆ D(E)

then x = y + z, with y ∈ N⊥ ∩M and z ∈ N , so that Ex = Ey = y. Therefore,

PN⊥PMEx = PN⊥Ex = PN⊥Ey = PN⊥y = 0.

This proves that
PN⊥PME = PR(PN⊥PM), in D(E). (14)

Equations (13) and (14) prove that E† = PN⊥PM ∈ X.

Remark 6.3. a) Observe that the domain D = R(T )⊕R(T )⊥ of the operator E = T †

in the above theorem can be also expressed as a (not necessarily orthogonal) direct
sum of two closed subspaces, more precisely D = N(T )⊥+̇R(T )⊥ = R(E)+̇N(E):
we have already proved that N(T )⊥ ⊆ D so that N(T )⊥+̇R(T )⊥ ⊆ D; to prove the
other inclusion we have to check that R(T ) ⊆ N(T )⊥+̇R(T )⊥: let x ∈ R(T ), then
we can compute T †x = Ex and Ex ∈ N(T )⊥. Therefore Ex = Ex + (I − E)x ∈
N(T )⊥ + R(T )⊥.

b) Let T ∈ X with polar decomposition T = V |T |. Let us consider the operator
with domain D = R(T )⊕R(T )⊥, defined by

E = |T |†V ∗|D.
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Observe that V : N(T )⊥ −→ R(T ) is unitary and, by construction of V , V (R(|T |)) =
R(T ). Then, V ∗(R(T )) = R(|T |); also observe that |T |†(R(|T |)) = N(T )⊥. Therefore,
E is well-defined and E(D) = N(T )⊥.

If x ∈ R(T )⊥ then Ex = |T |†V ∗x = 0 because R(T )⊥ = N(V ∗). Let us see that
E is the identity on N(T )⊥; we have to check that N(T )⊥ ⊆ D: if x ∈ N(T )⊥ then
x = PR(T )x + PR(T )⊥x = PR(T )PN(T )⊥x + PR(T )⊥x = Tx + PR(T )⊥x ∈ D. Then

Ex = |T |†V ∗(Tx + PR(T )⊥x) = |T |†V ∗Tx = |T |†V ∗V |T |x = |T |†|T |x = PN(T )⊥x = x.

Therefore, E = PN(T )⊥//R(T )⊥ , and its left ”polar decomposition” is

E = |T |†V ∗|D.

We can also consider T = |T ∗|VT to obtain the right ”polar decomposition” of E
given by E = V ∗|T ∗|†, in D.

c) Finally, observe that the Moore-Penrose pseudoinverses of positive parts of ele-

ments of X are the positive parts of elements of Q̃, i.e. (X+)
†
= Q̃+.

In [8] the set of isometric parts of bounded oblique projections is characterized.
Using this characterization, together with the construction of the (left) polar decom-
position of elements of Q̃ as above, and the fact that if T ∈ X then T ∗ ∈ X, we get the
following result:

Corollary 6.4.
JX = JQ̃

and
JXcr = JQ.
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