The logic of rational polyhedra

Daniele Mundici
Department of Mathematics “Ulisse Dini”
University of Florence, Florence, Italy
mundici@math.unifi.it
A polyhedron is a finite union P of simplexes S_i in \mathbb{R}^n.

- P need not be convex.
- P need not be connected.
- P may have parts of different dimensions.

A polyhedron $P = \bigcup S_i$ is said to be **rational** if so are the vertices of every simplex S_i.
Erlangen geometry of a group of transformations

Every group \(G \) of transformations in \(\mathbb{R}^n \) generates a geometry.

Example: \(E_n = \text{the euclidean group of affinities in } \mathbb{R}^n \)
A typical element of \(E_n \) is a map of the form \(x \rightarrow O_n x + t \)
where \(O \) is an orthogonal \(nxn \) matrix, and \(t \) is in \(\mathbb{R}^n \)

\(E_n \) is the semidirect product of the orthogonal group \(O_n \) and \(\mathbb{R}^n \)

We are all familiar with \(E_n \)-invariant measures:
Lebesgue measure is invariant under the euclidean group E_n. As a consequence of additivity, Lebesgue measure is invariant under piecewise linear 1-1 maps h, provided each linear piece of h is given by some element of E_n.
for each $n=1,2,...$, let us consider the geometry arising from the group G_n of affine maps in \mathbb{R}^n of the form

$$x \mapsto Ux + t$$

where U is an integer $n \times n$ matrix with determinant ± 1, and t is an integer vector in \mathbb{Z}^n.

G_n is known as the semidirect product of the unimodular group $GL(n, \mathbb{Z}) = \text{aut}(\mathbb{Z}^n)$ and the translation group \mathbb{Z}^n.

we will construct G_n-invariant measures. By additivity, these are automatically invariant under piecewise linear 1-1 maps where each piece belongs to G_n.
Z-homeomorphism = PL-homeomorphism with integer coefficients

DEFINITION Two rational polyhedra P and Q are **Z-homeomorphic** if there is a PL-homeomorphism h of P onto Q such that every piece of h as well as of its inverse h^{-1} has integer coefficients.
the action of piecewise G_n-linear maps

before

after
motivation: why logic?

rational polyhedra are the affine varieties of the “polynomials” given by formulas in a certain logic L_∞.

A \mathbb{Z}-homeomorphism corresponds to isomorphism in the algebras of L_∞, just as homeomorphism corresponds to isomorphism in the algebras of boolean logic (by Stone duality theorem).
\(\mathbb{Z}\)-homeomorphism does not preserve the usual measure of rational polyhedra \(P\) in \(\mathbb{R}^n\) when \(\dim(P) < n\).

These two black segments are \(\mathbb{Z}\)-homeomorphic, but their lengths are different.
to construct an invariant measure of rational polyhedra in the geometry of the group G_n
we need the following fundamental notion (taken from algebraic geometry)
DEFINITION The denominator $d = \text{den}(x)$ of a rational point x is the least common denominator of the coordinates of x.

DEFINITION A simplex T is regular if it is rational, and for each face F of T, each rational point in the interior of F has a denominator \geq the sum of the denominators of the vertices of F.

regularity of a simplex $T = \text{conv}(v_0, \ldots, v_n)$
regular triangulation of a rational polyhedron

all its simplexes are regular

Note: each vertex \((x/d, y/d)\) is written in homogeneous form, \((x, y, d)\)

Minkowski proved: The regularity of a simplex \(T\) means that the matrix of the homogeneous coordinates of the vertices of \(T\) is (extendible to) a unimodular integer matrix
volume of a regular simplex $T = \text{conv}(v_0, \ldots, v_n)$

$$\text{vol}(T) = \frac{1}{(n! \text{den}(v_0) \cdots \text{den}(v_n))^{-1}}$$

1/(2x1x1x2)=1/4= the Lebesgue area of the triangle

1/(2x3x2x2)=1/24 also coinciding with its Lebesgue area...
the volume of an arbitrary rational polyhedron P (equipped with a regular triangulation Δ)

We first calculate the volume of each simplex $d\Delta$ of maximum dimension.

Then we set

$$\text{Vol}(P) = \sum \text{Vol}(d\Delta)$$

to show that all this makes mathematical sense, we need a couple of results from toric varieties
dynamics of regular triangulations

unstarring at [a,b,c]
starring at e

unstarring at [a,b]
starring at u
a first main result
(the solution of the weak Oda conjecture by Wlodarczyk-Morelli)

THEOREM Any two regular triangulations of the same rational polyhedron are connected by a path of blow-ups and blow-downs.
a second main result
(elimination of points of indeterminacy in toric varieties)

THEOREM (de Concini-Procesi) For any two regular triangulations Δ and Σ on the same rational polyhedron, a sequence of blow-ups leads from Δ to a subdivision of Σ
by successive blowing ups, we will be able to refine any rational triangulation
by successive blowing ups, we will be able to refine any rational triangulation.
by successive blowing ups, we will be able to refine any rational triangulation.
by successive blowing ups, we will be able to refine any rational triangulation
by successive blowing ups, we will be able to refine any rational triangulation.
by successive blowing ups, we will be able to refine any rational triangulation
why toric varieties?
given a rational point \(A = (x_1, \ldots, x_n) \) in \(\mathbb{R}^n \)

let \(d \) be the denominator of \(A \)

then the tuple \(d(x_1, \ldots, x_n, 1) \) is a vector \(A' \) in \(\mathbb{Z}^{n+1} \)

\(A' \) is called the homogeneous correspondent of \(A \).
rational simplex \leftrightarrow integral cone

RATIONAL POINT

(PRIMITIVE) INTEGER VECTOR

2-SIMPLEX
\(\text{conv}(A, B, C)\)

3-CONE
\(\langle A', B', C' \rangle = \)
rational triangulation \iff fan

A simplicial complex with rational vertices in \mathbb{Q}^2

Any two simplices intersect in a common (possibly empty) face

Its corresponding fan,

A complex of cones with integer vectors
regular triangulation<-->regular fan

passing to homogeneous integer coordinates, every regular (unimodular) triangulation determines

a regular (nonsingular, smooth) fan, a standard tool in algebraic geometry to code nonsingular toric varieties
THEOREM \(\sum \text{Vol}(d\Delta) \) does not depend on \(\Delta \). So the notation \(\text{Vol}(P) \) is unambiguous.

This follows from the proof of Oda's conjecture, upon noting that \(\text{Vol}(P) \) is invariant under blow-ups.
THEOREM If P and Q are \(\mathbb{Z} \)-homeomorphic rational polyhedra then \(\text{Vol}(P) = \text{Vol}(Q) \)

by the De Concini-Procesi theorem, given \(h \) we can always compute the volumes of \(P \) and \(Q \) with the help of a regular triangulation \(\Delta \) of \(P \) such that \(h \) is linear over each simplex of \(\Delta \).
THEOREM When P is full-dimensional,
\[\sum \text{Vol}(d\Delta) \] is the Lebesgue measure of P

THEOREM When P is Lebesgue-negligible (as a lower-dimensional polyhedron) still, \[\sum \text{Vol}(d\Delta) \] is nonzero
The regular triangulation Δ to compute the integral $\int_P f \, d\Delta$ is so chosen that f is linear on each simplex of Δ

The integral of f over P is now defined in the natural way, as the volume underlying the graph of f
We have thus attached to every rational polyhedron P a measure that is invariant under \mathbb{Z}-homeomorphisms, coincides with Lebesgue measure if P is full-dimensional, but does not vanish if P is lower-dimensional.
connections with logic
(an introduction for non-logicians)
a main merit of classical logic

to give a rigorous meaning to the statement

conclusion \(p \) “follows” from premises \(p_1, \ldots, p_n \)

“consequence” becomes a mathematical notion
A main merit of L_∞ is to give a rigorous meaning to the following statement:

p “stably” follows from premises p_1, \ldots, p_n

in the sense that, even if we randomly delete a certain percentage of the formulas, formula p still follows (in the sense of the previous slide) from the remaining formulas p_1, \ldots, p_n.

L_∞ is a mathematically interesting logic for the treatment of partially unreliable information. L_∞ is the logic of the (Rényi-Ulam) Twenty Questions game, where a certain number of answers may be distorted/wrong/mendacious.
basic reference on Lukasiewicz logic L_∞

- any formula F in L_∞ describes the output of a continuous spectrum observable or event, just as a formula in classical boolean logic describes a yes-no event

- $\text{Mod}(F)$, the set of models of F, is the most general rational polyhedron

- $\text{Mod}(T)$, for T a set of formulas, is the most general compact Hausdorff space
the L_∞ language

- incorporates numbers and percentages in the language, without mentioning them

- we too, in everyday life, do not quantify our dubiousness degrees when reasoning informally

- rather we prefer to use adjectives or adverbs, like “uncertain” or “moderately unreliable”—and we are still able to make reasonable inferences

- only in classical logic and mathematical reasoning we assume 100% reliability
formulas in one variable
a formula f in two variables

- f is continuous
- f has finitely many linear pieces
- each piece of f has the form $a_1x_1 + \ldots + a_nx_n + b$
- where b and the a’s are integers.
- Any function f with these properties is called a McNaughton function.
the domain of f can be decomposed into finitely many simplexes S_i in such a way that f is linear over each S_i.

its zeroset
$Z(f) = f^{-1}(0)$
polyhedra as “affine varieties” of formulas

L_∞-formulas determine the most general possible rational polyhedron in $[0,1]^n$

rational polyhedra = “affine varieties” of L_∞-formulas

a formula F in L_∞ and its set of models $\text{Mod}(F) = F^{-1}(1) = \text{set of truth-valuations that satisfy } F$
MV-algebras are the algebras of L_∞-formulas

These are the defining equations of MV-algebras

$\quad x \oplus (y \oplus z) = (x \oplus y) \oplus z$

$\quad x \oplus y = y \oplus x$

$\quad x \oplus 0 = x$

$\quad \neg \neg x = x$

$\quad x \oplus \neg 0 = \neg 0$

Boolean algebras stand to classical logic as MV-algebras stand to L_∞.

Boolean algebras are obtained by adjoining the equation $x+x=x$

$\quad \neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x$.
COROLLARY Given a rational polyhedron P in the n-cube, let $J(P)$ be the set of McNaughton functions of the free MV-algebra FREE_n vanishing over P. Then $J(P)$ is a principal ideal of the free algebra FREE_n.

Conversely, for every principal ideal J of FREE_n let $Z(J)$ be the intersection of the zerosets of all functions in J. Then $Z(J)$ is a polyhedron in the n-cube, which coincides with the zeroset of any generator j of J.

The two maps $P \rightarrow J(P)$ and $J \rightarrow Z(J)$ are mutually inverse of each other.

These two maps induce a one-one correspondence between rational polyhedra and finitely presented MV-algebras.
closing a circle of ideas: invariant measures on polyhedra are in 1-1 correspondence with invariant probability measures on formulas
• a **state** f of A is a normalized functional on A which is additive on incompatible elements of A

• **THEOREM** (Kroupa-Panti) The states of any MV-algebra A are in one-one correspondence with the regular Borel probability measures on the maximal space $\mu(A)$ of A

• thus the finitely additive algebraic notion of state corresponds to the usual notion of sigma-additive regular Borel probability
the ratio $\int_P f \, d\Delta / \int_P d\Delta$ is a *computable* rational number, once the function f is presented via a formula of Lukasiewicz logic

this ratio does not depend on the regular triangulation Δ

the map $f \mapsto \int_P f \, d\Delta / \int_P d\Delta$ is an *invariant* state of the finitely presented MV-algebra $A(P)$ corresponding to P, called the *Lebesgue state* of $A(P)$, and denoted $L_{A(P)}$

a state f is *invariant* if $f(a(x)) = f(x)$ for every x in $A(P)$ and automorphism a of $A(P)$
• let Q be a variable rational polyhedron in some cube $[0,1]^n$. This Q is the model-set of a formula G in Lukasiewicz logic.

• given any other formula F with its McNaughton function f_F, the integral of f_F over Q, divided by $\text{Vol}(Q)$ is a conditional probability $P(F|G)$ of F given G

• $P(F|G)$ has various properties: rationality, computability, invariance, substitutability: $P(B|C) = P(X|(C\&X \Leftrightarrow B))$

• and also satisfies Rényi’s “law of compound probabilities”, which for yes-no events reads:

• $P(A\&B|C) = P(A|B\&C) \cdot P(B|C)$
this talk was only aimed at showing that the notion of \(Z\)-homeomorphism is dual to the notion of MV-algebraic isomorphism, and thus comes from Lukasiewicz logic

\(Z\)-homeomorphism is at the very beginning of an extensive and deep theory, involving fans, ordered groups, abstract simplicial complexes, probability theory and \(C^*\)-algebras
MV-algebras and their states inside mathematics

- Countable MV-algebras correspond to those AF C*-algebras whose Murray-von Neumann order of projections is a lattice.
- Invariant states of MV-algebras yield invariant states on their corresponding AF C*-algebras.

