# Una nueva generalización de la constante de Hermite<sup>1</sup>

Emilio Lauret Universidad Nacional de Córdoba

Seminario del IMAL "Carlos Segovia Fernandez"

21 de Octubre de 2011

<sup>&</sup>lt;sup>1</sup>Trabajo conjunto con W.K. Chan (Wesleyan University) y M.I. Icaza (Universidad de Talca)

### Contenidos

- Constante de Hermite clásica
  - Formas cuadráticas definidas positivas
  - Mínimo canónico
  - Constante de Hermite
  - Relación con lattices
- Constantes de Hermite hermíticas
  - Formas binarias hermíticas
  - Constante de Hermite clásica
  - Constante de Hermite proyectiva
  - Resultados conocidos
- Cálculo de la constante proyectiva
  - Correspondencias
  - Cálculo geométrico
  - Resultados



### Contenidos

- Constante de Hermite clásica
  - Formas cuadráticas definidas positivas
  - Mínimo canónico
  - Constante de Hermite
  - Relación con lattices
- Constantes de Hermite hermíticas
  - Formas binarias hermíticas
  - Constante de Hermite clásica
  - Constante de Hermite proyectiva
  - Resultados conocidos
- 3 Cálculo de la constante proyectiva
  - Correspondencias
  - Cálculo geométrico
  - Resultados



### Contenidos

- Constante de Hermite clásica
  - Formas cuadráticas definidas positivas
  - Mínimo canónico
  - Constante de Hermite
  - Relación con lattices
- Constantes de Hermite hermíticas
  - Formas binarias hermíticas
  - Constante de Hermite clásica
  - Constante de Hermite proyectiva
  - Resultados conocidos
- 3 Cálculo de la constante proyectiva
  - Correspondencias
  - Cálculo geométrico
  - Resultados



Una forma cuadrática de rango n es de la forma

$$S[x] = x^t S x \qquad (x \in \mathbb{R}^n),$$

donde  $S \in \mathrm{M}_n(\mathbb{R})$  tal que  $S^t = S$ .

Una forma cuadrática de rango n es de la forma

$$S[x] = x^t S x \qquad (x \in \mathbb{R}^n),$$

donde  $S \in \mathrm{M}_n(\mathbb{R})$  tal que  $S^t = S$ .

Una forma cuadrática de rango n es de la forma

$$S[x] = x^t S x \qquad (x \in \mathbb{R}^n),$$

donde  $S \in \mathrm{M}_n(\mathbb{R})$  tal que  $S^t = S$ .

Una forma cuadrática de rango n es de la forma

$$S[x] = x^t S x \qquad (x \in \mathbb{R}^n),$$

donde  $S \in \mathrm{M}_n(\mathbb{R})$  tal que  $S^t = S$ .

#### Definición

El mínimo canónico de S > 0 está dado por

$$\mu(S) = \min_{0 \neq x \in \mathbb{Z}^n} S[x].$$

Si t > 0 entonces  $\mu(t \cdot S) = t \mu(S)$ . Es razonable comparar  $\mu(S)$  con  $\det(S)^{1/n}$ .

### Teorema [Hermite]

$$\mu(S) \le \left(\frac{4}{3}\right)^{\frac{n-1}{2}} \det(S)^{\frac{1}{n}}$$



#### Definición

El mínimo canónico de S > 0 está dado por

$$\mu(S) = \min_{0 \neq x \in \mathbb{Z}^n} S[x].$$

Si t > 0 entonces  $\mu(t \cdot S) = t \mu(S)$ . Es razonable comparar  $\mu(S)$  con  $\det(S)^{1/n}$ .

#### Teorema [Hermite]

$$\mu(S) \le \left(\frac{4}{3}\right)^{\frac{n-1}{2}} \det(S)^{\frac{1}{n}}$$

#### Definición

El mínimo canónico de S > 0 está dado por

$$\mu(S) = \min_{0 \neq x \in \mathbb{Z}^n} S[x].$$

Si t>0 entonces  $\mu(t\cdot S)=t\,\mu(S)$ . Es razonable comparar  $\mu(S)$  con  $\det(S)^{1/n}$ .

#### Teorema [Hermite]

$$\mu(S) \le \left(\frac{4}{3}\right)^{\frac{n-1}{2}} \det(S)^{\frac{1}{n}}$$



#### Definición

El mínimo canónico de S > 0 está dado por

$$\mu(S) = \min_{0 \neq x \in \mathbb{Z}^n} S[x].$$

Si t > 0 entonces  $\mu(t \cdot S) = t \, \mu(S)$ . Es razonable comparar  $\mu(S)$  con  $\det(S)^{1/n}$ .

#### Teorema [Hermite]

$$\mu(S) \le \left(\frac{4}{3}\right)^{\frac{n-1}{2}} \det(S)^{\frac{1}{n}}$$



#### Definición

El mínimo canónico de S > 0 está dado por

$$\mu(S) = \min_{0 \neq x \in \mathbb{Z}^n} S[x].$$

Si t > 0 entonces  $\mu(t \cdot S) = t \, \mu(S)$ . Es razonable comparar  $\mu(S)$  con  $\det(S)^{1/n}$ .

### Teorema [Hermite]

$$\mu(S) \leq \left(\frac{4}{3}\right)^{\frac{n-1}{2}} \det(S)^{\frac{1}{n}}.$$



#### Definición

La constante de Hermite clásica de dimensión n se define como

$$\gamma_n = \max_{S} \frac{\mu(S)}{(\det(S))^{1/n}} = \max_{S} \min_{0 \neq x \in \mathbb{Z}^n} \frac{S[x]}{(\det(S))^{1/n}},$$

donde S recorre todas las formas cuadráticas definidas positivas de rango n.

Es inmediato que  $\gamma_n \leq \left(\frac{4}{3}\right)^{\frac{n-1}{2}}$ . En particular  $\gamma_2 = \sqrt{\frac{4}{3}}$ , pues el máximo se realiza en la forma  $S_1$ .

#### Definición

La constante de Hermite clásica de dimensión n se define como

$$\gamma_n = \max_{S} \frac{\mu(S)}{(\det(S))^{1/n}} = \max_{S} \min_{0 \neq x \in \mathbb{Z}^n} \frac{S[x]}{(\det(S))^{1/n}},$$

donde S recorre todas las formas cuadráticas definidas positivas de rango n.

Es inmediato que  $\gamma_n \leq \left(\frac{4}{3}\right)^{\frac{n-1}{2}}$ . En particular  $\gamma_2 = \sqrt{\frac{4}{3}}$ , pues el máximo se realiza en la forma  $S_1$ .

#### Definición

La constante de Hermite clásica de dimensión n se define como

$$\gamma_n = \max_{S} \frac{\mu(S)}{(\det(S))^{1/n}} = \max_{S} \min_{0 \neq x \in \mathbb{Z}^n} \frac{S[x]}{(\det(S))^{1/n}},$$

donde S recorre todas las formas cuadráticas definidas positivas de rango n.

Es inmediato que  $\gamma_n \leq \left(\frac{4}{3}\right)^{\frac{n-1}{2}}$ . En particular  $\gamma_2 = \sqrt{\frac{4}{3}}$ , pues el

#### Definición

La constante de Hermite clásica de dimensión n se define como

$$\gamma_n = \max_{S} \frac{\mu(S)}{(\det(S))^{1/n}} = \max_{S} \min_{0 \neq x \in \mathbb{Z}^n} \frac{S[x]}{(\det(S))^{1/n}},$$

donde S recorre todas las formas cuadráticas definidas positivas de rango n.

Es inmediato que  $\gamma_n \leq \left(\frac{4}{3}\right)^{\frac{n-1}{2}}$ . En particular  $\gamma_2 = \sqrt{\frac{4}{3}}$ , pues el máximo se realiza en la forma  $S_1$ .

### Relación con lattices

Un retículo o lattice  $\Lambda$  en  $\mathbb{R}^n$  es el conjunto de combinaciones lineales enteras de n vectores linealmente independientes en  $\mathbb{R}^n$ , en símbolos

$$\Lambda = \sum_{i=1}^n m_i v_i$$
 donde  $m_i \in \mathbb{Z}$ .

### Relación con lattices

Un retículo o lattice  $\Lambda$  en  $\mathbb{R}^n$  es el conjunto de combinaciones lineales enteras de n vectores linealmente independientes en  $\mathbb{R}^n$ , en símbolos

$$\Lambda = \sum_{i=1}^n m_i v_i$$
 donde  $m_i \in \mathbb{Z}$ .

### Relación con lattices

Un retículo o lattice  $\Lambda$  en  $\mathbb{R}^n$  es el conjunto de combinaciones lineales enteras de n vectores linealmente independientes en  $\mathbb{R}^n$ , en símbolos

$$\Lambda = \sum_{i=1}^n m_i v_i \quad \text{donde } m_i \in \mathbb{Z}.$$

Formas cuadráticas definidas positiva Mínimo canónico Constante de Hermite Relación con lattices

### Ejemplos:

772



Lattice hexagonal

Si S > 0 existe M tal que  $S = MM^t$ . Denotemos  $v_1, \ldots, v_n$  las filas de M.

$$S = MM^t \quad \Longleftrightarrow \quad \Lambda = \sum \mathbb{Z} \cdot v_i.$$

$$u(S) = \min_{0 \neq x \in \mathbb{Z}^n} S[x] = \min_{0 \neq v \in \Lambda} ||v||^2.$$

$$\gamma_n = \max_{S} \frac{\mu(S)}{\det(S)^{1/n}} = \max_{\Lambda} \frac{\min_{0 \neq \nu \in \Lambda} \|\nu\|^2}{\det(\Lambda)^{1/n}}.$$



Si S > 0 existe M tal que  $S = MM^t$ . Denotemos  $v_1, \ldots, v_n$  las filas de M.

$$S = MM^t \quad \Longleftrightarrow \quad \Lambda = \sum \mathbb{Z} \cdot v_i.$$

$$\mu(S) = \min_{0 \neq x \in \mathbb{Z}^n} S[x] = \min_{0 \neq v \in \Lambda} ||v||^2.$$

$$\gamma_n = \max_S \frac{\mu(S)}{\det(S)^{1/n}} = \max_\Lambda \frac{\min_{0 \neq v \in \Lambda} \|v\|^2}{\det(\Lambda)^{1/n}}$$

Si S > 0 existe M tal que  $S = MM^t$ . Denotemos  $v_1, \ldots, v_n$  las filas de M.

$$S = MM^t \quad \Leftrightarrow \quad \Lambda = \sum \mathbb{Z} \cdot v_i.$$

$$\mu(S) = \min_{0 \neq x \in \mathbb{Z}^n} S[x] = \min_{0 \neq v \in \Lambda} ||v||^2.$$

$$\gamma_n = \max_{S} \frac{\mu(S)}{\det(S)^{1/n}} = \max_{\Lambda} \frac{\min_{0 \neq v \in \Lambda} \|v\|^2}{\det(\Lambda)^{1/n}}$$



Si S > 0 existe M tal que  $S = MM^t$ . Denotemos  $v_1, \ldots, v_n$  las filas de M.

$$S = MM^t \quad \Longleftrightarrow \quad \Lambda = \sum \mathbb{Z} \cdot v_i.$$

$$\mu(S) = \min_{0 \neq x \in \mathbb{Z}^n} S[x] = \min_{0 \neq v \in \Lambda} ||v||^2.$$

$$\gamma_n = \max_{\mathcal{S}} \frac{\mu(\mathcal{S})}{\det(\mathcal{S})^{1/n}} = \max_{\Lambda} \frac{\min_{0 \neq \nu \in \Lambda} \|\nu\|^2}{\det(\Lambda)^{1/n}}$$



Si S > 0 existe M tal que  $S = MM^t$ . Denotemos  $v_1, \ldots, v_n$  las filas de M.

$$S = MM^t \quad \Longleftrightarrow \quad \Lambda = \sum \mathbb{Z} \cdot v_i.$$

$$\mu(S) = \min_{0 \neq x \in \mathbb{Z}^n} S[x] = \min_{0 \neq v \in \Lambda} ||v||^2.$$

$$\gamma_n = \max_{S} \frac{\mu(S)}{\det(S)^{1/n}} = \max_{\Lambda} \frac{\min_{0 \neq v \in \Lambda} \|v\|^2}{\det(\Lambda)^{1/n}}.$$



Dado un lattice  $\Lambda = \sum \mathbb{Z} \cdot v_i$ , el conjunto

$$P = \left\{ \sum_{i=1}^{n} t_i \, v_i : \quad 0 \le t \le 1 \right\}$$

es un dominio fundamental del lattice de traslaciones inducido por

 $\Lambda$ . Llamamos volumen de  $\Lambda$  al volumen de P.

Se cumple que

$$\det(S) = \det(\Lambda) = \operatorname{vol}(\Lambda)^2$$

Dado un lattice  $\Lambda = \sum \mathbb{Z} \cdot v_i$ , el conjunto

$$P = \left\{ \sum_{i=1}^{n} t_i \, v_i : \quad 0 \le t \le 1 \right\}$$

es un dominio fundamental del lattice de traslaciones inducido por  $\Lambda$ . Llamamos volumen de  $\Lambda$  al volumen de P.

Se cumple que

$$\det(S) = \det(\Lambda) = \operatorname{vol}(\Lambda)^2$$

Dado un lattice  $\Lambda = \sum \mathbb{Z} \cdot v_i$ , el conjunto

$$P = \left\{ \sum_{i=1}^{n} t_i \, v_i : \quad 0 \le t \le 1 \right\}$$

es un dominio fundamental del lattice de traslaciones inducido por  $\Lambda$ . Llamamos volumen de  $\Lambda$  al volumen de P.

Se cumple que

$$\det(S) = \det(\Lambda) = \operatorname{vol}(\Lambda)^2$$
.

# Empaquetamiento de esferas

Dado  $\Lambda$  un lattice, hay una distancia mínima entre sus puntos, que es igual a

$$r = \min_{0 \neq v \in \Lambda} \|v\|.$$

Entonces  $\Lambda$  induce un empaquetamiento de esferas de radio r/2 centradas en cada punto del lattice.

# Empaquetamiento de esferas

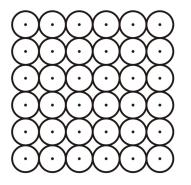
Dado  $\Lambda$  un lattice, hay una distancia mínima entre sus puntos, que es igual a

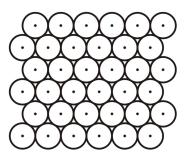
$$r = \min_{0 \neq v \in \Lambda} \|v\|.$$

Entonces  $\Lambda$  induce un empaquetamiento de esferas de radio r/2 centradas en cada punto del lattice.

Formas cuadráticas definidas positiva Mínimo canónico Constante de Hermite Relación con lattices

### Ejemplos:



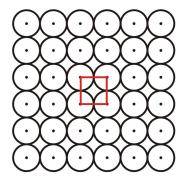


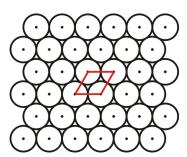
### Definición

La densidad de un lattice  $\Lambda$  es

$$\delta(\Lambda) = \frac{\text{volumen de una bola}}{\text{volumen del lattice}}.$$

### Ejemplos:





$$\delta(\Lambda) = \frac{\text{volumen de una bola}}{\text{volumen del lattice}}.$$

$$\implies \delta(\Lambda) = \frac{c_n r^n}{\det(\Lambda)^{1/2}} = c_n \left(\frac{r^2}{\det(\Lambda)^{1/n}}\right)^{n/2}.$$

$$\delta(\Lambda) = \frac{\text{volumen de una bola}}{\text{volumen del lattice}}.$$

$$\implies \delta(\Lambda) = \frac{c_n r^n}{\det(\Lambda)^{1/2}} = c_n \left(\frac{r^2}{\det(\Lambda)^{1/n}}\right)^{n/2}.$$

# Nos restringiremos al caso binario (n = 2).

Una forma hermítica binaria es de la forma

$$S[x] = x^* Sx = (\bar{x}_1 \ \bar{x}_2) \begin{pmatrix} a & b \\ \bar{b} & c \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= a|x_1|^2 + b\bar{x}_1 x_2 + \bar{b}x_1 \bar{x}_2 + c|x_2|^2 \qquad (x \in \mathbb{C}^2)$$

$$S > 0 \iff \det(S) > 0 \quad \text{y} \quad a > 0.$$

Nos restringiremos al caso binario (n = 2).

Una forma hermítica binaria es de la forma

$$S[x] = x^* Sx = (\bar{x}_1 \ \bar{x}_2) \begin{pmatrix} a & b \\ \bar{b} & c \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= a|x_1|^2 + b\bar{x}_1 x_2 + \bar{b}x_1 \bar{x}_2 + c|x_2|^2 \qquad (x \in \mathbb{C}^2).$$

$$S > 0 \iff \det(S) > 0 \quad \text{y} \quad a > 0.$$

Nos restringiremos al caso binario (n = 2).

Una forma hermítica binaria es de la forma

$$S[x] = x^* Sx = (\bar{x}_1 \ \bar{x}_2) \begin{pmatrix} a & b \\ \bar{b} & c \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= a|x_1|^2 + b\bar{x}_1 x_2 + \bar{b}x_1 \bar{x}_2 + c|x_2|^2 \qquad (x \in \mathbb{C}^2).$$

$$S > 0 \iff \det(S) > 0 \quad y \quad a > 0.$$

Nos restringiremos al caso binario (n = 2).

Una forma hermítica binaria es de la forma

$$S[x] = x^* Sx = (\bar{x}_1 \ \bar{x}_2) \begin{pmatrix} a & b \\ \bar{b} & c \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= a|x_1|^2 + b\bar{x}_1 x_2 + \bar{b}x_1 \bar{x}_2 + c|x_2|^2 \qquad (x \in \mathbb{C}^2).$$

$$S > 0 \iff \det(S) > 0 \quad y \quad a > 0.$$

Para definir el mínimo de una forma hermítica binaria nos hacen falta enteros en donde evaluar la forma.

Fijemos K una extensión cuadrática imaginaria de  $\mathbb{Q}$ , esto es un cuerpo  $K \subset \mathbb{C}$  tal que  $\dim_{\mathbb{Q}}(K) = 2$  y  $K \not\subset \mathbb{R}$ .

$$K = \mathbb{Q}(\sqrt{-D})$$
  $D \in \mathbb{N}$  libre de cuadrados.

Para definir el mínimo de una forma hermítica binaria nos hacen falta enteros en donde evaluar la forma.

Fijemos K una extensión cuadrática imaginaria de  $\mathbb{Q}$ , esto es un cuerpo  $K \subset \mathbb{C}$  tal que  $\dim_{\mathbb{Q}}(K) = 2$  y  $K \not\subset \mathbb{R}$ .

$$K = \mathbb{Q}(\sqrt{-D})$$
  $D \in \mathbb{N}$  libre de cuadrados

Para definir el mínimo de una forma hermítica binaria nos hacen falta enteros en donde evaluar la forma.

Fijemos K una extensión cuadrática imaginaria de  $\mathbb{Q}$ , esto es un cuerpo  $K \subset \mathbb{C}$  tal que  $\dim_{\mathbb{Q}}(K) = 2$  y  $K \not\subset \mathbb{R}$ .

$$K = \mathbb{Q}(\sqrt{-D})$$
  $D \in \mathbb{N}$  libre de cuadrados

Para definir el mínimo de una forma hermítica binaria nos hacen falta enteros en donde evaluar la forma.

Fijemos K una extensión cuadrática imaginaria de  $\mathbb{Q}$ , esto es un cuerpo  $K \subset \mathbb{C}$  tal que  $\dim_{\mathbb{Q}}(K) = 2$  y  $K \not\subset \mathbb{R}$ .

$$K = \mathbb{Q}(\sqrt{-D})$$
  $D \in \mathbb{N}$  libre de cuadrados

Para definir el mínimo de una forma hermítica binaria nos hacen falta enteros en donde evaluar la forma.

Fijemos K una extensión cuadrática imaginaria de  $\mathbb{Q}$ , esto es un cuerpo  $K \subset \mathbb{C}$  tal que  $\dim_{\mathbb{Q}}(K) = 2$  y  $K \not\subset \mathbb{R}$ .

$$K = \mathbb{Q}(\sqrt{-D})$$
  $D \in \mathbb{N}$  libre de cuadrados.

$$\mathcal{O}=\mathbb{Z}[\omega]\quad ext{donde}\quad \omega= egin{cases} \sqrt{-D} & ext{si }D\equiv 1,2\pmod 4, \ \ \dfrac{1+\sqrt{-D}}{2} & ext{si }D\equiv 3\pmod 4. \end{cases}$$

### Ejemplos

• 
$$K = \mathbb{Q}(\sqrt{-1}), \ \mathcal{O} = \mathbb{Z}[\sqrt{-1}]$$
 (enteros de Gauss),

• 
$$K = \mathbb{Q}(\sqrt{-2}), \ \mathcal{O} = \mathbb{Z}[\sqrt{-2}],$$

• 
$$K = \mathbb{Q}(\sqrt{-3}), \ \mathcal{O} = \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$$
 (enteros de Eisenstein)

$$\mathcal{O}=\mathbb{Z}[\omega]\quad ext{donde}\quad \omega= egin{cases} \sqrt{-D} & ext{si }D\equiv 1,2\pmod 4, \ \dfrac{1+\sqrt{-D}}{2} & ext{si }D\equiv 3\pmod 4. \end{cases}$$

## Ejemplos:

• 
$$K = \mathbb{Q}(\sqrt{-1})$$
,  $\mathcal{O} = \mathbb{Z}[\sqrt{-1}]$  (enteros de Gauss),

• 
$$K = \mathbb{Q}(\sqrt{-2}), \ \mathcal{O} = \mathbb{Z}[\sqrt{-2}],$$

• 
$$K = \mathbb{Q}(\sqrt{-3}), \ \mathcal{O} = \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$$
 (enteros de Eisenstein)

$$\mathcal{O} = \mathbb{Z}[\omega] \quad \text{donde} \quad \omega = \begin{cases} \sqrt{-D} & \text{si } D \equiv 1,2 \pmod{4}, \\ \\ \frac{1+\sqrt{-D}}{2} & \text{si } D \equiv 3 \pmod{4}. \end{cases}$$

### Ejemplos:

• 
$$K = \mathbb{Q}(\sqrt{-1})$$
,  $\mathcal{O} = \mathbb{Z}[\sqrt{-1}]$  (enteros de Gauss),

• 
$$K = \mathbb{Q}(\sqrt{-2}), \ \mathcal{O} = \mathbb{Z}[\sqrt{-2}],$$

• 
$$K = \mathbb{Q}(\sqrt{-3})$$
,  $\mathcal{O} = \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$  (enteros de Eisenstein).

$$\mathcal{O}=\mathbb{Z}[\omega]\quad ext{donde}\quad \omega= egin{cases} \sqrt{-D} & ext{si }D\equiv 1,2\pmod 4, \ \dfrac{1+\sqrt{-D}}{2} & ext{si }D\equiv 3\pmod 4. \end{cases}$$

## Ejemplos:

• 
$$K = \mathbb{Q}(\sqrt{-1})$$
,  $\mathcal{O} = \mathbb{Z}[\sqrt{-1}]$  (enteros de Gauss),

• 
$$K = \mathbb{Q}(\sqrt{-2}), \ \mathcal{O} = \mathbb{Z}[\sqrt{-2}],$$

• 
$$K=\mathbb{Q}(\sqrt{-3}), \ \mathcal{O}=\mathbb{Z}\left\lceil \frac{1+\sqrt{-3}}{2} \right\rceil$$
 (enteros de Eisenstein).

#### Definición

El mínimo canónico de S > 0 está dado por

$$\mu(S) = \min_{0 \neq x \in \mathcal{O}^2} S[x].$$

#### Definición

La constante de Hermite clásica está dada por

$$\gamma_{K,2} = \max_{S} \frac{\mu(S)}{(\det(S))^{1/2}}$$

donde *S* recorre todas las formas binarias hermíticas definidas positivas.

#### Definición

El mínimo canónico de S > 0 está dado por

$$\mu(S) = \min_{0 \neq x \in \mathcal{O}^2} S[x].$$

#### Definición

La constante de Hermite clásica está dada por

$$\gamma_{K,2} = \max_{S} \frac{\mu(S)}{(\det(S))^{1/2}},$$

donde S recorre todas las formas binarias hermíticas definidas positivas.

Sea  $x = (\alpha, \beta)^t \in \mathcal{O}^2$ 

- Denotamos  $\langle \alpha, \beta \rangle = \alpha \mathcal{O} + \beta \mathcal{O} \subseteq \mathcal{O}$  al ideal en  $\mathcal{O}$  generado por  $\alpha$  y  $\beta$ .
- Denotamos  $N(\langle \alpha, \beta \rangle) = \#(\mathcal{O}/\langle \alpha, \beta \rangle) \in \mathbb{N}$  a la norma del ideal  $\langle \alpha, \beta \rangle$ .

En el caso real: si  $x = (\alpha, \beta)^t \in \mathbb{Z}^2$  entonces

$$\langle \alpha, \beta \rangle = \operatorname{mcd}(\alpha, \beta) \cdot \mathbb{Z} \quad \text{y} \quad N(\langle \alpha, \beta \rangle) = \operatorname{mcd}(\alpha, \beta)$$

Sea 
$$x = (\alpha, \beta)^t \in \mathcal{O}^2$$
.

- Denotamos  $\langle \alpha, \beta \rangle = \alpha \mathcal{O} + \beta \mathcal{O} \subseteq \mathcal{O}$  al ideal en  $\mathcal{O}$  generado por  $\alpha$  y  $\beta$ .
- Denotamos  $N(\langle \alpha, \beta \rangle) = \#(\mathcal{O}/\langle \alpha, \beta \rangle) \in \mathbb{N}$  a la norma del ideal  $\langle \alpha, \beta \rangle$ .

En el caso real: si  $x = (\alpha, \beta)^t \in \mathbb{Z}^2$  entonces

$$\langle \alpha, \beta \rangle = \operatorname{mcd}(\alpha, \beta) \cdot \mathbb{Z} \quad \text{y} \quad N(\langle \alpha, \beta \rangle) = \operatorname{mcd}(\alpha, \beta)$$

Sea 
$$x = (\alpha, \beta)^t \in \mathcal{O}^2$$
.

- Denotamos  $\langle \alpha, \beta \rangle = \alpha \mathcal{O} + \beta \mathcal{O} \subseteq \mathcal{O}$  al ideal en  $\mathcal{O}$  generado por  $\alpha$  y  $\beta$ .
- Denotamos  $N(\langle \alpha, \beta \rangle) = \#(\mathcal{O}/\langle \alpha, \beta \rangle) \in \mathbb{N}$  a la norma del ideal  $\langle \alpha, \beta \rangle$ .

En el caso real: si  $x=(\alpha,\beta)^t\in\mathbb{Z}^2$  entonces

$$\langle \alpha, \beta \rangle = \operatorname{mcd}(\alpha, \beta) \cdot \mathbb{Z} \quad \text{y} \quad N(\langle \alpha, \beta \rangle) = \operatorname{mcd}(\alpha, \beta)$$

Sea  $x = (\alpha, \beta)^t \in \mathcal{O}^2$ .

- Denotamos  $\langle \alpha, \beta \rangle = \alpha \mathcal{O} + \beta \mathcal{O} \subseteq \mathcal{O}$  al ideal en  $\mathcal{O}$  generado por  $\alpha$  y  $\beta$ .
- Denotamos  $N(\langle \alpha, \beta \rangle) = \#(\mathcal{O}/\langle \alpha, \beta \rangle) \in \mathbb{N}$  a la norma del ideal  $\langle \alpha, \beta \rangle$ .

En el caso real: si  $x=(lpha,eta)^t\in\mathbb{Z}^2$  entonces

$$\langle \alpha, \beta \rangle = \operatorname{mcd}(\alpha, \beta) \cdot \mathbb{Z}$$
 y  $N(\langle \alpha, \beta \rangle) = \operatorname{mcd}(\alpha, \beta)$ 

Sea  $x = (\alpha, \beta)^t \in \mathcal{O}^2$ .

- Denotamos  $\langle \alpha, \beta \rangle = \alpha \mathcal{O} + \beta \mathcal{O} \subseteq \mathcal{O}$  al ideal en  $\mathcal{O}$  generado por  $\alpha$  y  $\beta$ .
- Denotamos  $N(\langle \alpha, \beta \rangle) = \#(\mathcal{O}/\langle \alpha, \beta \rangle) \in \mathbb{N}$  a la norma del ideal  $\langle \alpha, \beta \rangle$ .

En el caso real: si  $x=(\alpha,\beta)^t\in\mathbb{Z}^2$  entonces

$$\langle \alpha, \beta \rangle = \operatorname{mcd}(\alpha, \beta) \cdot \mathbb{Z}$$
 y  $N(\langle \alpha, \beta \rangle) = \operatorname{mcd}(\alpha, \beta)$ 

Sea  $x = (\alpha, \beta)^t \in \mathcal{O}^2$ .

- Denotamos  $\langle \alpha, \beta \rangle = \alpha \mathcal{O} + \beta \mathcal{O} \subseteq \mathcal{O}$  al ideal en  $\mathcal{O}$  generado por  $\alpha$  y  $\beta$ .
- Denotamos  $N(\langle \alpha, \beta \rangle) = \#(\mathcal{O}/\langle \alpha, \beta \rangle) \in \mathbb{N}$  a la norma del ideal  $\langle \alpha, \beta \rangle$ .

En el caso real: si  $x = (\alpha, \beta)^t \in \mathbb{Z}^2$  entonces

$$\langle \alpha, \beta \rangle = \mathsf{mcd}(\alpha, \beta) \cdot \mathbb{Z}$$
 y  $N(\langle \alpha, \beta \rangle) = \mathsf{mcd}(\alpha, \beta)$ .

$$S[x] = \mu(S)$$
  $(x \in \mathbb{Z}^n \text{ realiza el mínimo de } S),$ 

$$\Rightarrow \operatorname{mcd}(x_1,\ldots,x_n)=1,$$

$$\Rightarrow$$
  $\langle x 
angle = \mathbb{Z} \quad \Longleftrightarrow \quad \mathit{N}(\langle x 
angle) = 1 \quad (x ext{ es unimodular})$ 

$$S[x] = \mu(S)$$
 y  $N(\langle x \rangle) > 1$ .

$$S[x] = \mu(S)$$
  $(x \in \mathbb{Z}^n \text{ realiza el mínimo de } S),$   
 $\Rightarrow \operatorname{mcd}(x_1, \dots, x_n) = 1,$   
 $\Rightarrow \langle x \rangle = \mathbb{Z} \iff \mathcal{N}(\langle x \rangle) = 1$   $(x \text{ es unimodular})$ 

$$S[x] = \mu(S)$$
 y  $N(\langle x \rangle) > 1$ .

$$S[x] = \mu(S)$$
  $(x \in \mathbb{Z}^n \text{ realiza el mínimo de } S),$ 

$$\Rightarrow \operatorname{mcd}(x_1,\ldots,x_n)=1,$$

$$\Rightarrow \langle x \rangle = \mathbb{Z} \iff N(\langle x \rangle) = 1 \quad (x \text{ es unimodular}).$$

$$S[x] = \mu(S)$$
 y  $N(\langle x \rangle) > 1$ .

$$S[x] = \mu(S)$$
  $(x \in \mathbb{Z}^n \text{ realiza el mínimo de } S),$ 

$$\Rightarrow \operatorname{mcd}(x_1,\ldots,x_n)=1,$$

$$\Rightarrow \langle x \rangle = \mathbb{Z} \iff N(\langle x \rangle) = 1 \quad (x \text{ es unimodular}).$$

$$S[x] = \mu(S)$$
 y  $N(\langle x \rangle) > 1$ .

$$S[x] = \mu(S)$$
  $(x \in \mathbb{Z}^n \text{ realiza el mínimo de } S),$ 

$$\Rightarrow \operatorname{mcd}(x_1,\ldots,x_n)=1,$$

$$\Rightarrow \langle x \rangle = \mathbb{Z} \iff N(\langle x \rangle) = 1 \quad (x \text{ es unimodular}).$$

$$S[x] = \mu(S)$$
 y  $N(\langle x \rangle) > 1$ .

$$h_K = \#\left(rac{\{ ext{ideales fraccionarios en }K\}}{\{ ext{ideales principales en }K\}}
ight).$$

O es DFU si y sólo si es DIP.

 $h_K = 1$  si y sólo si  $\mathcal{O}$  es DFU.

Mientras más grande es  $h_K$  "menos DFU" es  $\mathcal O$ 

Si 
$$K=\mathbb{Q}(\sqrt{-D})$$
 con  $D>0$  libre de cuadrados, entonces

$$h_K = 1 \iff D = 1, 2, 3, 7, 11, 19, 43, 163$$

$$h_K = \#\left(rac{\{ ext{ideales fraccionarios en }K\}}{\{ ext{ideales principales en }K\}}
ight).$$

 $\mathcal{O}$  es DFU si y sólo si es DIP.

 $h_K = 1$  si y sólo si  $\mathcal{O}$  es DFU.

Mientras más grande es  $h_K$  "menos DFU" es  $\mathcal{O}$ .

Si 
$$K=\mathbb{Q}(\sqrt{-D})$$
 con  $D>0$  libre de cuadrados, entonces

$$h_K = 1 \iff D = 1, 2, 3, 7, 11, 19, 43, 163.$$

$$h_K = \#\left(rac{\{ ext{ideales fraccionarios en }K\}}{\{ ext{ideales principales en }K\}}
ight).$$

 $\mathcal{O}$  es DFU si y sólo si es DIP.

 $h_{\mathcal{K}}=1$  si y sólo si  $\mathcal{O}$  es DFU.

Mientras más grande es  $h_K$  "menos DFU" es  $\mathcal{O}$ .

Si 
$$K=\mathbb{Q}(\sqrt{-D})$$
 con  $D>0$  libre de cuadrados, entonces

$$h_K = 1 \iff D = 1, 2, 3, 7, 11, 19, 43, 163$$

$$h_K = \#\left(rac{\{ ext{ideales fraccionarios en }K\}}{\{ ext{ideales principales en }K\}}
ight).$$

 $\mathcal{O}$  es DFU si y sólo si es DIP.

 $h_K = 1$  si y sólo si  $\mathcal{O}$  es DFU.

Mientras más grande es  $h_K$  "menos DFU" es  $\mathcal{O}$ .

Si 
$$K=\mathbb{Q}(\sqrt{-D})$$
 con  $D>0$  libre de cuadrados, entonces

$$h_K = 1 \iff D = 1, 2, 3, 7, 11, 19, 43, 163.$$

$$h_K = \#\left(rac{\{ ext{ideales fraccionarios en }K\}}{\{ ext{ideales principales en }K\}}
ight).$$

 $\mathcal{O}$  es DFU si y sólo si es DIP.

 $h_K = 1$  si y sólo si  $\mathcal{O}$  es DFU.

Mientras más grande es  $h_K$  "menos DFU" es  $\mathcal{O}$ .

Si  $K=\mathbb{Q}(\sqrt{-D})$  con D>0 libre de cuadrados, entonces

$$h_K = 1 \iff D = 1, 2, 3, 7, 11, 19, 43, 163.$$

#### Definición

Definimos el mínimo proyectivo como

$$\mu^p(S) = \min_{0 \neq x \in \mathcal{O}^2} \frac{S[x]}{N(\langle \alpha, \beta \rangle)}.$$

Es claro que

$$\mu^p(S) \leq \mu(S).$$

Si  $h_K=1$  entonces  $S[x]=\mu(S)$  implica x es unimodular, por lo tanto

$$\mu(S) = \mu^p(S).$$

#### Definición

Definimos el mínimo proyectivo como

$$\mu^p(S) = \min_{0 \neq x \in \mathcal{O}^2} \frac{S[x]}{N(\langle \alpha, \beta \rangle)}.$$

Es claro que

$$\mu^p(S) \leq \mu(S)$$
.

Si  $h_K = 1$  entonces  $S[x] = \mu(S)$  implica x es unimodular, por lo tanto

$$\mu(S) = \mu^p(S).$$



### Definición

Definimos el mínimo proyectivo como

$$\mu^p(S) = \min_{0 \neq x \in \mathcal{O}^2} \frac{S[x]}{N(\langle \alpha, \beta \rangle)}.$$

Es claro que

$$\mu^p(S) \leq \mu(S)$$
.

Si  $h_K=1$  entonces  $S[x]=\mu(S)$  implica x es unimodular, por lo tanto

$$\mu(S) = \mu^p(S).$$



#### Definición

Definimos el mínimo proyectivo como

$$\mu^p(S) = \min_{0 \neq x \in \mathcal{O}^2} \frac{S[x]}{N(\langle \alpha, \beta \rangle)}.$$

Es claro que

$$\mu^p(S) \leq \mu(S)$$
.

Si  $h_K=1$  entonces  $S[x]=\mu(S)$  implica x es unimodular, por lo tanto

$$\mu(S) = \mu^{p}(S).$$

#### Definición

Definimos la constante de Hermite proyectiva como

$$\gamma_{K,2}^p = \max_{S} \frac{\mu^p(S)}{(\det(S))^{1/2}},$$

donde S recorre todas las formas binarias hermíticas definidas positivas.

### Es claro que

$$\gamma_{K,2}^p \leq \gamma_{K,2},$$

y ellos coinciden si  $h_K = 1$ 

#### Definición

Definimos la constante de Hermite proyectiva como

$$\gamma_{K,2}^p = \max_{S} \frac{\mu^p(S)}{(\det(S))^{1/2}},$$

donde S recorre todas las formas binarias hermíticas definidas positivas.

Es claro que

$$\gamma_{K,2}^p \leq \gamma_{K,2},$$

y ellos coinciden si  $h_K = 1$ .

Para  $K = \mathbb{Q}$ :

- n = 2, 3, 4, 5, 6, 7, 8.
- n = 24 (Leech lattice).

Para  $K = \mathbb{Q}(\sqrt{-D})$  y n = 2

- D = 1, Speiser (1932).
- D = 1, 2, 3, 7, 11, 19, Perron (1933).
- Oberseider completó los casos con número de clase 1 (D=43,67,163) y calculó  $\gamma_{K,2}$  (constante clásica) para los casos D=5,6,10,13,15 (1934).
- Oppenheim mostró que

$$\gamma_{K,2} \leq \frac{|d_K|}{2},$$

# Para $K = \mathbb{Q}$ :

- n = 2, 3, 4, 5, 6, 7, 8.
- n = 24 (Leech lattice).

Para 
$$K = \mathbb{Q}(\sqrt{-D})$$
 y  $n = 2$ :

- D = 1, Speiser (1932)
- D = 1, 2, 3, 7, 11, 19, Perron (1933).
- Oberseider completó los casos con número de clase 1 (D=43,67,163) y calculó  $\gamma_{K,2}$  (constante clásica) para los casos D=5,6,10,13,15 (1934).
- Oppenheim mostró que

$$\gamma_{K,2} \leq \frac{|d_K|}{2},$$



Para  $K = \mathbb{Q}$ :

- n = 2, 3, 4, 5, 6, 7, 8.
- n = 24 (Leech lattice).

Para  $K = \mathbb{Q}(\sqrt{-D})$  y n = 2:

- D = 1, Speiser (1932).
- D = 1, 2, 3, 7, 11, 19, Perron (1933).
- Oberseider completó los casos con número de clase 1 (D=43,67,163) y calculó  $\gamma_{K,2}$  (constante clásica) para los casos D=5,6,10,13,15 (1934).
- Oppenheim mostró que

$$\gamma_{K,2} \leq \frac{|d_K|}{2},$$



Para  $K = \mathbb{Q}$ :

- n = 2, 3, 4, 5, 6, 7, 8.
- n = 24 (Leech lattice).

Para  $K = \mathbb{Q}(\sqrt{-D})$  y n = 2:

- D = 1, Speiser (1932).
- D = 1, 2, 3, 7, 11, 19, Perron (1933).
- Oberseider completó los casos con número de clase 1 (D=43,67,163) y calculó  $\gamma_{K,2}$  (constante clásica) para los casos D=5,6,10,13,15 (1934).
- Oppenheim mostró que

$$\gamma_{K,2} \leq \frac{|d_K|}{2},$$



### Nuestro método

Todas las formas hermíticas binarias sobre  $K = \mathbb{Q}(\sqrt{-D})$  son:

$$\begin{split} \mathcal{P}_{K,2} &= \left\{ \begin{pmatrix} a & b \\ \bar{b} & c \end{pmatrix} \in \mathrm{M}_2(\mathbb{C}) \ : \ ac - |b|^2 > 0, \ c > 0 \right\}. \\ \\ \mathcal{P}_{K,2}(\Delta) &= \{ S \in \mathcal{P}_{K,2} : \det(S) = \Delta \}. \end{split}$$

El modelo del semiespacio superior del espacio hiperbólico tridimensional es:

$$\mathbf{H}^3 = \{ (z, \zeta) \in \mathbb{C} \times \mathbb{R} : \zeta > 0 \}.$$

### Nuestro método

Todas las formas hermíticas binarias sobre  $K = \mathbb{Q}(\sqrt{-D})$  son:

$$\begin{split} \mathcal{P}_{K,2} &= \left\{ \begin{pmatrix} a & b \\ \bar{b} & c \end{pmatrix} \in \mathrm{M}_2(\mathbb{C}) \ : \ ac - |b|^2 > 0, \ c > 0 \right\}. \\ \mathcal{P}_{K,2}(\Delta) &= \{ S \in \mathcal{P}_{K,2} : \det(S) = \Delta \}. \end{split}$$

El modelo del semiespacio superior del espacio hiperbólico tridimensional es:

$$\mathrm{H}^3 = \{(z,\zeta) \in \mathbb{C} \times \mathbb{R} : \zeta > 0\}.$$

El grupo  $\mathrm{GL}_2(\mathbb{C})$  actúa en ambos conjuntos por:

$$g \cdot S = |\det(S)|(g^{-1})^*S(g^{-1}),$$

$$g\cdot (z,\zeta) = \left(\frac{(az+b)\overline{(cz+d)} + a\overline{c}\zeta^2}{|cz+d|^2 + |c|^2\zeta^2}, \frac{|\det g|\ \zeta}{|cz+d|^2 + |c|^2\zeta^2}\right).$$

El mapeo  $\Phi: \mathcal{P}_{K,2} \to \mathrm{H}^3$  definido por

$$\Phi\begin{pmatrix} a & b \\ \bar{b} & c \end{pmatrix} = \begin{pmatrix} -b \\ a \end{pmatrix}, \frac{\sqrt{ac - |b|^2}}{a}$$

es  $\mathrm{GL}_2(\mathbb{C})$ -equivariante, y  $\Phi_\Delta := \Phi|_{\mathcal{P}_{K,2}(\Delta)} : \mathcal{P}_{K,2}(\Delta) \to \mathrm{H}^3$  es una biyección para todo  $\Delta > 0$ .



El grupo  $\mathrm{GL}_2(\mathbb{C})$  actúa en ambos conjuntos por:

$$g \cdot S = |\det(S)|(g^{-1})^*S(g^{-1}),$$

$$g\cdot (z,\zeta) = \left(\frac{(az+b)\overline{(cz+d)} + a\overline{c}\zeta^2}{|cz+d|^2 + |c|^2\zeta^2}, \frac{|\det g|\zeta}{|cz+d|^2 + |c|^2\zeta^2}\right).$$

El mapeo  $\Phi: \mathcal{P}_{K,2} \to \mathrm{H}^3$  definido por

$$\Phi\begin{pmatrix} a & b \\ \bar{b} & c \end{pmatrix} = \begin{pmatrix} -b \\ \overline{a}, \frac{\sqrt{ac - |b|^2}}{a} \end{pmatrix},$$

es  $\mathrm{GL}_2(\mathbb{C})$ -equivariante, y  $\Phi_\Delta := \Phi|_{\mathcal{P}_{K,2}(\Delta)} : \mathcal{P}_{K,2}(\Delta) \to \mathrm{H}^3$  es una biyección para todo  $\Delta > 0$ .



Se llaman cúspides a los elementos  $\lambda$  de  $\mathbb{P}^1(K)$ , i.e.

$$\lambda \in \mathcal{K} \subset \mathbb{C}$$
 o  $\lambda = \infty$ .

$$\lambda = \infty$$
.

Se llaman cúspides a los elementos  $\lambda$  de  $\mathbb{P}^1(K)$ , i.e.

$$\lambda \in K \subset \mathbb{C}$$
 o  $\lambda = \infty$ .

### Notación:

- Si  $\lambda \in K$  escribimos  $\lambda = \alpha/\beta$  con  $\alpha, \beta \in \mathcal{O}$ .
- Si  $\lambda = \infty$  escribimos  $\lambda = 1/0$ .

# Correspondencias

$$\mathcal{P}_{K,2}(\Delta) \longleftrightarrow H^{3}$$

$$S = \begin{pmatrix} \frac{a}{b} & b \\ \bar{b} & c \end{pmatrix} \longrightarrow P_{S} = \begin{pmatrix} \frac{-b}{a}, \frac{\sqrt{ac - |b|^{2}}}{a} \end{pmatrix}$$

$$S_{P} = \frac{\sqrt{\Delta}}{\zeta} \begin{pmatrix} 1 & -z \\ -\bar{z} & |z|^{2} + \zeta^{2} \end{pmatrix} \longleftarrow P = (z, \zeta)$$

$$x = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \in \mathcal{O}_{K}^{2} \longrightarrow \lambda = \frac{\alpha}{\beta} \in \mathbb{P}^{1}(K)$$

$$S[x] = x^{*}Sx \longleftrightarrow ?$$

La distancia entre un punto  $P=(z,\zeta)\in \mathrm{H}^3$  y una cúspide  $\lambda=\alpha/\beta$  está dada por

$$d(P,\lambda) = \frac{|\beta z - \alpha|^2 + |\beta|^2 \zeta^2}{\zeta N(\alpha,\beta)}.$$

Uno puede chequear que

$$d(P,\lambda) = \frac{S[x]}{\sqrt{\Delta} N(\alpha,\beta)}.$$

Entonces

$$\gamma_{K,2}^P = \max_{P \in \mathbb{H}^3} \min_{\lambda \in \mathbb{P}^1(K)} d(P,\lambda).$$

La distancia entre un punto  $P=(z,\zeta)\in \mathrm{H}^3$  y una cúspide  $\lambda=\alpha/\beta$  está dada por

$$d(P,\lambda) = \frac{|\beta z - \alpha|^2 + |\beta|^2 \zeta^2}{\zeta N(\alpha,\beta)}.$$

Uno puede chequear que

$$d(P,\lambda) = \frac{S[x]}{\sqrt{\Delta} N(\alpha,\beta)}.$$

Entonces

$$\gamma_{K,2}^p = \max_{P \in \mathbb{H}^3} \min_{\lambda \in \mathbb{P}^1(K)} d(P, \lambda).$$

La distancia entre un punto  $P=(z,\zeta)\in \mathrm{H}^3$  y una cúspide  $\lambda=\alpha/\beta$  está dada por

$$d(P,\lambda) = \frac{|\beta z - \alpha|^2 + |\beta|^2 \zeta^2}{\zeta N(\alpha,\beta)}.$$

Uno puede chequear que

$$d(P,\lambda) = \frac{S[x]}{\sqrt{\Delta} N(\alpha,\beta)}.$$

Entonces

$$\gamma_{K,2}^p = \max_{P \in \mathrm{H}^3} \min_{\lambda \in \mathbb{P}^1(K)} d(P,\lambda).$$

La distancia entre un punto  $P=(z,\zeta)\in \mathrm{H}^3$  y una cúspide  $\lambda=\alpha/\beta$  está dada por

$$d(P,\lambda) = \frac{|\beta z - \alpha|^2 + |\beta|^2 \zeta^2}{\zeta N(\alpha,\beta)}.$$

Uno puede chequear que

$$d(P,\lambda) = \frac{S[x]}{\sqrt{\Delta} N(\alpha,\beta)}.$$

**Entonces** 

$$\gamma_{K,2}^p = \max_{P \in \mathcal{H}^3} \min_{\lambda \in \mathbb{P}^1(K)} d(P,\lambda).$$

La distancia entre un punto  $P=(z,\zeta)\in \mathrm{H}^3$  y una cúspide  $\lambda=\alpha/\beta$  está dada por

$$d(P,\lambda) = \frac{|\beta z - \alpha|^2 + |\beta|^2 \zeta^2}{\zeta \, N(\alpha,\beta)}.$$

Uno puede chequear que

$$d(P,\lambda) = \frac{S[x]}{\sqrt{\Delta} N(\alpha,\beta)}.$$

**Entonces** 

$$\gamma_{K,2}^p = \max_{P \in \mathcal{H}^3} \min_{\lambda \in \mathbb{P}^1(K)} d(P,\lambda).$$

#### **Observaciones:**

Para  $P=(z,\zeta)\in \mathrm{H}^3$  y  $\lambda=lpha/eta
eq\infty$ , se puede chequear que

$$d(P,\infty) = \frac{1}{\zeta}, \qquad d(P,\lambda) = \frac{|P-\lambda|^2}{\zeta N_{\lambda}} \quad \left(N_{\lambda} = \frac{N\langle \alpha, \beta \rangle}{|\beta|^2}\right).$$

El conjunto

$$S(\lambda,\mu) := \{ P \in \mathcal{H}^3 : d(P,\lambda) = d(P,\mu) \}$$

es una semiesfera o un plano, perpendicular al borde  $\mathbb{C}.$   $S(\lambda,\infty)$  es una semiesfera centrada en  $\lambda$  con radio  $\sqrt{N_\lambda}.$ 

#### **Observaciones:**

Para  $P=(z,\zeta)\in \mathrm{H}^3$  y  $\lambda=\alpha/\beta\neq\infty$ , se puede chequear que

$$d(P,\infty) = \frac{1}{\zeta}, \qquad d(P,\lambda) = \frac{|P-\lambda|^2}{\zeta N_{\lambda}} \quad \left(N_{\lambda} = \frac{N\langle \alpha, \beta \rangle}{|\beta|^2}\right)$$

El conjunto

$$S(\lambda,\mu) := \{ P \in \mathcal{H}^3 : d(P,\lambda) = d(P,\mu) \}$$

es una semiesfera o un plano, perpendicular al borde  $\mathbb C.$   $S(\lambda,\infty)$  es una semiesfera centrada en  $\lambda$  con radio  $\sqrt{N_\lambda}$ 

#### **Observaciones:**

Para  $P=(z,\zeta)\in \mathrm{H}^3$  y  $\lambda=\alpha/\beta\neq\infty$ , se puede chequear que

$$d(P,\infty)=\frac{1}{\zeta}, \qquad d(P,\lambda)=\frac{|P-\lambda|^2}{\zeta N_{\lambda}} \quad \left(N_{\lambda}=\frac{N\langle\alpha,\beta\rangle}{|\beta|^2}\right).$$

El conjunto

$$S(\lambda,\mu) := \{ P \in \mathbb{H}^3 : d(P,\lambda) = d(P,\mu) \}$$

es una semiesfera o un plano, perpendicular al borde  $\mathbb C$ .  $S(\lambda,\infty)$  es una semiesfera centrada en  $\lambda$  con radio  $\sqrt{N_\lambda}$ 

#### **Observaciones:**

Para  $P=(z,\zeta)\in\mathrm{H}^3$  y  $\lambda=lpha/eta\neq\infty$ , se puede chequear que

$$d(P,\infty)=rac{1}{\zeta}, \qquad d(P,\lambda)=rac{|P-\lambda|^2}{\zeta\;N_\lambda} \quad \left(N_\lambda=rac{N\langle lpha,eta
angle}{|eta|^2}
ight).$$

El conjunto

$$S(\lambda,\mu):=\{P\in \mathrm{H}^3: d(P,\lambda)=d(P,\mu)\}$$

es una semiesfera o un plano, perpendicular al borde  $\mathbb C.$   $S(\lambda,\infty)$  es una semiesfera centrada en  $\lambda$  con radio  $\sqrt{N_\lambda}$ 

#### **Observaciones:**

Para  $P=(z,\zeta)\in \mathrm{H}^3$  y  $\lambda=lpha/eta\neq\infty$ , se puede chequear que

$$d(P,\infty)=rac{1}{\zeta}, \qquad d(P,\lambda)=rac{|P-\lambda|^2}{\zeta\;N_\lambda} \quad \left(N_\lambda=rac{N\langle\alpha,eta
angle}{|eta|^2}
ight).$$

El conjunto

$$S(\lambda,\mu) := \{ P \in \mathbb{H}^3 : d(P,\lambda) = d(P,\mu) \}$$

es una semiesfera o un plano, perpendicular al borde  $\mathbb C.$ 

 $S(\lambda, \infty)$  es una semiesfera centrada en  $\lambda$  con radio  $\sqrt{N_{\lambda}}$ 

#### **Observaciones:**

Para  $P=(z,\zeta)\in \mathrm{H}^3$  y  $\lambda=lpha/eta\neq\infty$ , se puede chequear que

$$d(P,\infty)=rac{1}{\zeta}, \qquad d(P,\lambda)=rac{|P-\lambda|^2}{\zeta\;N_\lambda} \quad \left(N_\lambda=rac{N\langle\alpha,eta
angle}{|eta|^2}
ight).$$

El conjunto

$$S(\lambda,\mu):=\{P\in \mathrm{H}^3: d(P,\lambda)=d(P,\mu)\}$$

es una semiesfera o un plano, perpendicular al borde  $\mathbb{C}$ .  $S(\lambda, \infty)$  es una semiesfera centrada en  $\lambda$  con radio  $\sqrt{N_{\lambda}}$ .

Llamemos conjunto minimal asociado a una cúspide  $\lambda$  a

$$H(\lambda) = \{ P \in \mathbb{H}^3 : d(P, \lambda) \le d(P, \mu) \text{ for all } \mu \ne \lambda \}.$$

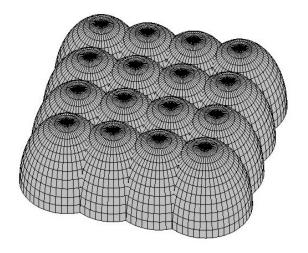
Claramente, si 
$$P \in H(\lambda)$$
 entonces  $\min_{\mu \in \mathbb{P}^1(K)} d(P,\mu) = d(P,\lambda)$ .

Llamemos conjunto minimal asociado a una cúspide  $\lambda$  a

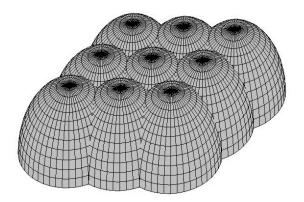
$$H(\lambda) = \{ P \in \mathbb{H}^3 : d(P, \lambda) \le d(P, \mu) \text{ for all } \mu \ne \lambda \}.$$

Claramente, si 
$$P \in H(\lambda)$$
 entonces  $\min_{\mu \in \mathbb{P}^1(K)} d(P,\mu) = d(P,\lambda)$ .

Por ejemplo:  $H(\infty)$  por  $K = \mathbb{Q}(\sqrt{-1})$ ,



Por ejemplo:  $H(\infty)$  por  $K = \mathbb{Q}(\sqrt{-3})$ ,



# Denotemos $\Gamma = \mathrm{SL}_2(\mathcal{O})$ al grupo de Bianchi asociado a K.

 $d(\cdot,\cdot)$  es invariante bajo la acción de  $\Gamma$ , i.e.

$$d(g \cdot P, g \cdot \lambda) = d(P, \lambda) \quad \forall g \in \Gamma.$$

Consideremos

$$\Gamma(\lambda) = \{ g \in \Gamma : g \cdot \lambda = \lambda \}.$$

Entonces  $\Gamma(\lambda)$  deja estable a  $H(\lambda)$  y a su frontera  $\partial H(\lambda)$ .

Denotemos  $\Gamma = \mathrm{SL}_2(\mathcal{O})$  al grupo de Bianchi asociado a K.  $d(\cdot, \cdot)$  es invariante bajo la acción de  $\Gamma$ , i.e.

$$d(g \cdot P, g \cdot \lambda) = d(P, \lambda) \quad \forall g \in \Gamma.$$

Consideremos

$$\Gamma(\lambda) = \{ g \in \Gamma : g \cdot \lambda = \lambda \}.$$

Entonces  $\Gamma(\lambda)$  deja estable a  $H(\lambda)$  y a su frontera  $\partial H(\lambda)$ .

Denotemos  $\Gamma = \mathrm{SL}_2(\mathcal{O})$  al grupo de Bianchi asociado a K.  $d(\cdot,\cdot)$  es invariante bajo la acción de  $\Gamma$ , i.e.

$$d(g \cdot P, g \cdot \lambda) = d(P, \lambda) \quad \forall g \in \Gamma.$$

Consideremos

$$\Gamma(\lambda) = \{ g \in \Gamma : g \cdot \lambda = \lambda \}.$$

Entonces  $\Gamma(\lambda)$  deja estable a  $H(\lambda)$  y a su frontera  $\partial H(\lambda)$ .

### Teorema [Mendoza]

$$\begin{array}{ll} \gamma_{K,2}^P &=& \displaystyle \max_{P \in \bigcup_{\lambda} \partial H(\lambda)} \min_{\lambda \in \mathbb{P}^1(K)} d(P,\lambda) \\ &=& \displaystyle \max_{1 \leq i \leq h} \max_{P \in \partial H(\lambda_i)} d(P,\lambda_i) \\ &=& \displaystyle \max_{1 \leq i \leq h} \max_{P \in \widetilde{T}_i} d(P,\lambda_i), \end{array}$$

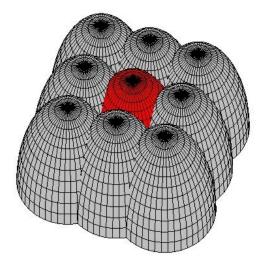
donde  $\widetilde{T}_i$  denota un dominio fundamental de  $\partial H(\lambda_i)$  bajo la acción de  $\Gamma(\lambda_i)$ .

### Teorema [Mendoza]

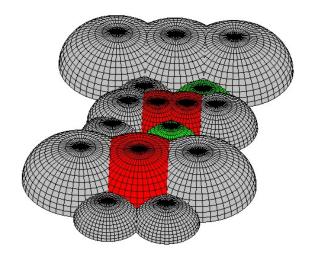
$$\begin{array}{ll} \gamma_{K,2}^{p} & = & \displaystyle \max_{P \in \bigcup_{\lambda} \partial H(\lambda)} \min_{\lambda \in \mathbb{P}^{1}(K)} d(P,\lambda) \\ & = & \displaystyle \max_{1 \leq i \leq h} \max_{P \in \partial H(\lambda_{i})} d(P,\lambda_{i}) \\ & = & \displaystyle \max_{1 \leq i \leq h} \max_{P \in \widetilde{T}_{i}} d(P,\lambda_{i}), \end{array}$$

donde  $\widetilde{T}_i$  denota un dominio fundamental de  $\partial H(\lambda_i)$  bajo la acción de  $\Gamma(\lambda_i)$ .

Ejemplo: 
$$\widetilde{T}_1 = \partial H(\infty)/\Gamma(\infty)$$
 para  $K = \mathbb{Q}(\sqrt{-1})$   $(h_K = 1)$ ,



Ejemplo: 
$$T_1 = \partial H(\infty)/\Gamma(\infty)$$
 para  $K = \mathbb{Q}(\sqrt{-39})$   $(h_K = 4)$ ,



# Tabla de resultados

Calculamos  $\gamma_{K,2}^p$  para K para  $|d_K| < 70$ .

| d <sub>K</sub> | D  | $\gamma_{K,2}^p$ | $\gamma_{K,2}$ | h <sub>K</sub> |
|----------------|----|------------------|----------------|----------------|
| 3              | 3  | 3/2              | 3/2            | 1              |
| 4              | 1  | 2                | 2              | 1              |
| 7              | 7  | 7/3              | 7/3            | 1              |
| 8              | 2  | 4                | 4              | 1              |
| 11             | 11 | 11/2             | 11/2           | 1              |
| 15             | 15 | 3                | 20/3           | 2              |
| 19             | 19 | 19/2             | 19/2           | 1              |
| 20             | 5  | 5                | 80/11          | 2              |
| 23             | 23 | 23/5             |                | 2 3            |
| 24             | 6  | 12               | 12             | 2              |

| $-d_K$ | D   | $\gamma_{K,2}^p$ | $\gamma_{K,2}$ | h <sub>K</sub> |
|--------|-----|------------------|----------------|----------------|
| 31     | 31  | 31/3             |                | 2              |
| 35     | 35  | 7                |                | 2              |
| 39     | 39  | 13               |                | 4              |
| 40     | 10  | 180/13           | 640/39         | 2              |
| 43     | 43  | 43/2             | 43/2           | 1              |
| 47     | 47  | 47/5             | ·              | 5              |
| 51     | 51  | 51/2             | 51/2           | 2              |
| 52     | 13  | 52/3             | 832/35         | 2              |
| 55     | 55  | 176/19           | ·              | 4              |
| 56     | 14  | 28/3             | 896/41         | 4              |
| 59     | 59  | 59/2             | 59/2           | 3              |
| 67     | 67  | 67/2             | 67/2           | 1              |
| 68     | 17  | 34               | 34             | 4              |
| 163    | 163 | 163/2            | 163/2          | 1              |