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CLASSES OF WEIGHTS RELATED TO SCHRODINGER
OPERATORS

B. BONGIOANNI, E. HARBOURE AND O. SALINAS

ABSTRACT. In this work we obtain boundedness on weighted Lebesgue spaces
on R% of the semi-group maximal function, Riesz transforms, fractional inte-
grals and g-function associated to the Schrodinger operator —A + V', where
V satisfies a reverse Holder inequality with exponent greater than d/2. We
consider new classes of weights that locally behave as Muckenhoupt’s weights
and actually include them. The notion of locality is defined by means of the
critical radius function of the potential V' given in [8].

1. INTRODUCTION
Let us consider the Schrédinger operator on R? with d > 3,
L=-A+YV,

where the potential V' is non-negative, non-identically zero, and for some ¢ > d/2
satisfies the reverse Holder inequality

(1) (|;| /B V<y>Qdy)1/q<|% | v

for every ball B C R%. The set of functions with the last property is usually denoted
by RH,.

Since V € RH, implies V' € RHy, . for some € > 0, notice that the assumption
q > d/2 is equivalent to ¢ > d/2:

We will be interested in weighted LP inequalities for the following operators
associated to L:

e Maximal operator of the diffusion semi-group
(2) T" f(x) = supe™ " f(x).
>0
e [-Riesz potential or L£-Fractional Integral
o dt
(3) Iaf(;v)zﬁ_o‘/zf(m):/ e_tﬁf(x)to‘p?, 0<a<d.
0

o [-Riesz transforms

(4) R=vL 2,
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and their adjoints
R*=L7'PV.

e [-Square Function

9 1/2
tdt> .

It is well known that for the classical case of £L = —A, the maximal operator of
the heat diffusion semi-group, the Riesz transforms and the g-function are bounded
on LP(w), 1 < p < oo, for w in the Muckenhoupt A, classes defined by the inequality

o () ) om

for every ball B C R?, and of weak type (1, 1) for weights satisfying the 4; condition
(7) w(B) supw™ < C|B],
B

6 a(f)(x) = ( | |G e

for every ball B C R?.
Also, the classical Fractional Integral of order 0'< « < d, is bounded from L (w)

into L”(w”/?), L = % — 2 when w”/? € A4z, and of weak type (1, 7%) for
D
d

weights such that wa-= € Aj.

As we shall see the classes of weights for Schrédinger operators under the stated
hypothesis on V' will be in general larger than Muckenhoupt’s. It is well known that
the operators derived from £ behave “locally” quite similar to those corresponding
to the Laplacian (see for example [3] or [8]). This notion of locality is given by the
critical radius function

1
(8) p(m):sup{r>0:rd_2/ V<1}7 z € RY
B(z,r)

which, under our assumptions, is easy to check that 0 < p(z) < co (see [8]).

Our new classes of weights are given in terms of this critical radius function.
More precisely, given p > 1 we introduce the class Af»> = ngoAg’e, where Ag’e is
defined as those weights w such that

(o) ()™ em (e 5t5)

for every ball B = B(x,r).

Clearly, the classes Az’g are increasing with 6, and for # = 0 they are the Muck-
enhoupt classes A,. Moreover, the inclusions are proper. Take for instance, p =1
and w(z) = 1+ [z[7. Now, for v > d(p — 1), the weight w belongs to A5:>°, but it
is not in A,.

In this work we will show that the operators (2) and (5) defined above are
bounded on LP(w) for w in Af>°, 1 < p < oo, and of weak type (1, 1) for w in AP
(see Theorem 2 and Theorem 5). As for the Riesz transforms (4) we get the same
results when the potential satisfies (1) with ¢ > d. However, when d/2 < ¢ < d,
the range of p must be restricted and also the classes of weights shrink when ¢ get
closer to d/2 (see Theorem 3 and Corollary 2). Indeed, in [8] it is shown that for
w = 1 the given range is optimal.
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Regarding the Fractional Integral (3) we prove that it maps L (w) into L” (w"/?)

for weights such that w/? e A’ffoﬁ, l1<p<dfa, L= % — 9, and of weak type

(1, 72-) for weights such that Wit € AP

We achieve these results through the comparison of the new operators with the
classical ones when restricted to local regions given by p.

In this way we are led to study weighted LP inequalities for the p-localized
classical operators. In this setting larger classes of weights appear, namely the
classes A%1°¢ defined as those weights that satisfy (6) for balls B(x,r) with r < p(x).
We summarized all of these results in Section 2, since we believe they are interesting
by themselves.

The four remaining sections are devoted to state and prove weighted LP in-
equalities for the maximal operator of the semi-group, the Riesz transforms, the
Fractional Integral and the Square Function, respectively.

2. LOCALIZED CLASSICAL OPERATORS AND. WEIGHTS

Let us denote by T%, I,,, R, and g, the classical versions of the operators consid-
ered in the introduction, that means, those defined by (2), (3), (4) and (5), when
L = —A. Let us also consider M, the Hardy-Littlewood maximal function.

If S stands for any of the above operators we denote by Siec, the p-localization
of S,

(9) SlOC(f)('r) = S(fXB(z,p(m)))(x)
Our aim is to show weighted inequalities for .S, but first we give some properties
of p that we will use later.

Proposition 1 ([8]). If V € RHgy/s, there exist co and No > 1 such that

1) ol (14 (‘j')_% < ) < o) (1412 (‘x;")

for all z,y € R,

A ball of the form B(x,p(x)) is called critical. Inequality (10) implies that if
o > 0and z,y € 0Q, where @ is a critical ball, then

(11) p(x) < Copl(y),

where O, = ¢2(1 + 0)%, and ¢g is the constant appearing in (10).

In what follows we will call critical radius function to any positive continuous
function p that satisfies (10), not necessarily coming from a potential V. Clearly,
if p is such a function, so it is 8p for any 8 > 0.

As a consequence of (11) we derive the following result.

Proposition 2 (See [4]). There exists a sequence of points x;, j > 1, in R?, so
that the family Q; = B(z;, p(x;)), j > 1, satisfies

i) U;Q; = R%.

it) For every o > 1 there exist constants C' and Ny such that, Zj Xo@; < ColNt,

Now we turn to present some properties of weights in the class Ag’loc defined
in the previous section, i.e., those weights that satisfy (6) for balls B(z,r) with

r < p(x).
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We define D, as the set of weights w for which there exists a constant C' such
that for any pair of balls By = B(xg,r) and B; = B(x1,7/2), with By C By and
r < P(xo)»

Clearly for any 1 < p < 0o, w € Ag’loc implies w € D,,.
Proposition 3. For every 8 > 1, D, = Dg,.

Proof. We only have to prove D, C Dg,. Let w € D,, and consider two balls
By = B(xg,r) and By = B(z1,r/2), with By C By and p(zg) < r < Bp(x0), we
must prove that there exists a constant Cjg such that

(12) ’LU(B()) < Og w(Bl)

First observe that for = € 2By, by property (10) we have

1 or \
plx) > ap(:vo) (1 + p(:ro)) = pdin-

Now let us consider a covering of By by balls P; = B(y;, pmin/4) such that
i) P; N By # 0, for every j.
i) 3P, N3P =0, for k #j.
Therefore, for any j and k such that P; 0Py # 0, we have
w(P;) < w(dPy) < C?w(Py),

where in the last inequality we have used that w € D, since the radius of 4P is
Pmin < p(yx), which in turn holds because yi € 2By.

Also, property ii) implies that the number of balls { P;} is bounded by C, f4No+1)
with C; depending only on the dimension d and cq. Finally, if P;, denotes a member
of the family such that z; € P;,,

w(By) < Zw(Pj) < 20201gd(N0+1)w(Pj1) < Clﬂd(NoJrl)CZClﬁd(No+1)w(Bl)7
J J
since Pj, C Bj. O

Corollary 1. For1<p<oo and 8> 1, Agaloc = Agp,loc‘

Proof. We first prove tha case 1 < p < co. Assuming w in szloc, it is easy to check
that both w and w77 belong to D, and hence also to Dg,, by Proposition 3.
Now, it is easy to derive w € Ag”vloc. In fact, if B = B(x,r) with r < 8p(z), and
N the least integer such that 2V > 3 we have

wB T (B Sw(B) [w (4B)] < IBp,

where the last inequality holds since the radius of QiNB is less than p(x).

Finally, we deal with the case p = 1. For B and N as above. We choose a ball
By C B with radius 5% such that supp  w™' = suppw™'. Using that w € A’f’loc
implies w € D, and hence w € Dg,, we have

w(B)supw™ S w(By)supw ™' < [B| S |Bl.
B B

N
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Notice that, even all the classes Agpvloc are the same, the membership constant
may increase with 3, otherwise the weight would be in A4,.

Next we give a general result that can be applied to prove the boundedness of
the localized classical operators. To this end, we consider a covering of balls {Q;}
such that the family of a fixed dilation of them, {Qj}, has bounded overlapping
(for instance, a covering associated to p like a in Proposition 2).

For a given operator S, we define

(13) So(F) = D_xa,I(fxg, )l

Proposition 4. Let 1 < p < v < oo, and a weight w on RE with the following
property: for each j, w\Qj admits an extension w; to R? such that

(14) S LP(wj) v L" (w!'?)
boundedly with a constant independent of j. Then
So : LP(w;) = L¥(w]’?)

continuously. If for p = 1 the assumption (14) 4s changed by weak type (1,v), the
corresponding weak type can be concluded for Sy .

Proof. Let I; = {k: QN Q; # 0}. Due to the bounded overlapping property of
the family @);, and the assumptions on S and w;,

J kEIj

Sy / S(xg, I w”!?

k jel,” @k

> [ st i’
v/p

) (/ k )

([ )"

where in the last inequality we have used that p < v and the bounded overlapping
property of the family {Q,}.
To prove the weak type statement, we proceed in a similar way to get

N

S

A

AN

A

N

{ISo(N) > A} C Uj Uger, Qi N Qi N{[S(fxg, )| > A/M}
C UkQk N{IS(fxga, ) > A/M},
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where M is such that >, xo, < M. Hence,

w ({ISo(H>A) S D wi({IS(fxg, )l > A/MY)
k

Sy (/Q f|wk)y

()

We say that a weight w defined on a ball By, belongs to A,(By) if the inequality
(6) is satisfied for every ball B C By.

We will use the following fact concerning extension of weights. For related results
see also [5].

A

O

Lemma 1. Given a ball By and a weight w € A,(By), 1 < p < 00, there exists an
extension wy € A,(R?) with the same constant.

Proof. By means of a conformal mapping it is equivalent to work with cubes. For
that case a construction process was given in/[6], namely proceeding by reflecting
the weight to neighboring cubes of the same size. O

Now, we are ready to prove the main result of this section.

Theorem 1. Let p a function satisfying (10) then:

a) Mioe, T}, Rioe and gioc are bounded on LP(w), 1 < p < oo, for w € A§7ZOC, and
they are of weak type (1;1) for w € AL,

b) For 0 < o < d, (In)iee is bounded from LP(w) into L*(w®/?), 1 < p < d/a,
% = % -9, for w*/P e A’ff}; and it is of weak type (1, ﬁ) for witE € A’f’loc.

N,
Proof. Let 0 = ¢p2 No?rl, with Ny and ¢y as in Proposition 1. Let {Q;} be the
family given by Proposition 2 and set QQ; = 0Q;. Clearly, we have

(15) Useq, B(z, p(2)) € Q;.

Let w e Ag’loc, 1 < p < o0. Due to Corollary 1, w € Ag”*loc, and then, for any j,
w\Qj € A,(Q,), with a constant independent of j. Applying Lemma 1, we obtain
for each j an extension w; such that w; € A,(R?), and uniformly in j.

It is well known that M, T*, R and g are bounded on LP(w), 1 < p < oo, for
w € Ap, and weak type (1,1) for w € A;. Hence, we get that My, Tj, Ro and go,
associated to the covering {Q;} as in (13), are bounded in LP(w), 1 < p < oo, for
w € APlo¢ and weak type (1,1) for w € AP'¢ in view of Proposition 4.

The conclusion of a) follows immediately for M, and T}5_ since

Mlocf(x) < Mof(it) and j—it)cf(x) < T5|f|($)7

as a consequence of (15).
Regarding R and g, since they are not positive operators, we have to be more
careful.
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First, for z € Q;, by (15),

(1) [Rucf(2) - Blxg, Nie)l 5 [

@l <« L

Yy S Tx - |f|’
O\Ba.p(@)) [T —yl? Q51 /4,

since p(x) ~ p(x;) when « € Q;. Therefore, for 1 < p < oo,

1
1Rocf iy 3 [ ( /
bt EJ: 2 \1@51 /e

and the first term can be bounded by,

S uw@) [ur @] o [ 3L i

] Qj
< / P,
Rd

where we have used again Corollary 1. Therefore, from Proposition 4 we are done
for 1 <p < .
For the case p = 1, again from (16) and w € A?'°° we have for cach j,

Wil € Qy Rl @)~ B, )@= WS 5 [l 191w

P
If(y)ldy> w+ 1R f 12

J

Besides, from Proposition 4,
1
w(fr € Qs+ Roxg, /@I SAD Sy /Q [ fhe.

Therefore, summing over j we get the weak type (1,1).
d

|22

Let us remind that for the heat kernel hy(z) = (47t)™2 exp(—'3-), we have
|2

< taL exp(———).

(17) it <

Consequently, for z € Q);,
2

) _lz—y?
e 5t
e (@)~ 2lxg D@ < | ( /. A\BWQ»W'“”'@) v

Using that |z — y| > p(x) ~ p(z;) when 2 € Q; and y ¢ B(z,p(x)), the last
expression is bounded by

006_2% 2 1 2
- < _
[l < Gkl

Taking square root we obtain the same point-wise bound as in (16), and the proof
follows in the same way as above for R.
Finally, b) can be derived easily from Proposition 4 as for M. and Ty ., since

(I )oef(x) < (In)of (x), for f > 0. .

Remark 1. Let us note that, following standard arguments, the condition Agvloc is
also necessary for the boundedness of M, in LP(w).
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3. THE MAXIMAL OF THE SEMI-GROUP

We begin this section with an estimate of the kernel of the operator e t£, ¢t > 0,
that will be denoted by k;.
As it is well known

(18) ke(z,y) < hu(z —y),
where h; is the classical heat kernel. Moreover, we have the following result.

Lemma 2 ([7]). Given N > 0, there exists a constant Cn such that for all z and
y in RY,

2 N
kp(2,y) < Ont= 42 e <1 P(\/j) T p}f)) .

Now we present the main result of this section.

Theorem 2. For 1 < p < oo the operator T* is.bounded on LP(w) when w € Apee,
and of weak type (1,1) when w € AP,

Proof. First, for z € R? we denote B, = B(z, p(x)) and thus
(19) T*f(l’) < lgcf(‘T) + %Tobf(‘r%

for all f in LP(w), where Ty, f(z) = T*fxa, (@) and Ty, f(z) = T x: (@).
To deal with the first term of (19) we use (18) to obtain,

Tocf(@) S Toef ().

Hence, the LP(w) boundedness and the weak type (1,1) for 7,
rem 1 since Af>° C Ab:loe,

For the second term of (19) we use again Lemma 2 and the estimate e™* < QM%
with d < M < N. Splitting into annuli, we obtain

follow from Theo-

_ Vit - Ja—yl?
p- d/ - 5t
Taonf () S sup t7%2 (1 + p(m)> /B e |f(y)| dy

t>0 i
ap [ VI >M< Vi >N N

< d/2 v 1 v 2 kM d

<o (56) (0 2 /B\B 7l ay

< gi(),
with

_ —d - —kM

(20) o) = )32 [

and the last inequality is easily obtained considering the cases 0 < t < p(x)? and
t > p(x)2.

Let {Q;} be a covering of critical balls given by Proposition 1 and we set Qj like
in the proof of Theorem 1 satisfying (15). Denoting Q? = Qij, then 2B, C Q?
and p(xz) ~ p(z;), whenever & € @Q;. Therefore, for 1 < p < oo, by Holder’s
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inequality
1/p
0 p
IPTEED SER Do ARt < / |f> w(z) de
k=0 j Qi 2% B

1/p

. p/p
< 9—kM p(m.)*dp ( wp//p> w(Q;) | f[Pw

Q

Since Q; C Qf and w € Agv‘g for some 6 > 0, the last expression is bounded by

1/p

PBEAEE DY /klflpw S vy Y 27 =0,
k=0 j Ve k=0

where the last inequality is due to the control on the overlapping of the family {Qf}
given by Proposition 2. For M large enough we are done in the case 1 < p < co. For
the case p = 1 the same proof, with the obvious changes, gives strong boundedness
on L (w) for w € AP™. O

4. RIESZ TRANSFORMS

The operators R and R* were studied by Shen in [8]. There he proved that
when ¢ > d, R and R* are bounded on LP(dz), 1 < p < co. Moreover, he showed
that they are in fact Calderén-Zygmund operators and thus of weak type (1,1).
However, if we only know that ¢ > d/2, he obtains L? boundedness on a smaller
range of p, depending on ¢, that he proves to be optimal.

These operators have singular kernels with values in R? that will be denoted by
K and K* respectively. For such kernels, we have the following estimates that are
basically proved in [8].

Lemma 3. Let V € RH, with ¢ > d/2. Then we have:

i) For every N there exists a constant Cn such that

o, (1 v ‘””(;%')_N V() 1
(21) |K*(z,y)| < - (/ ————du + ) :
B(

|z —yld—1 v, lz—y|/4) lu —yld=1 lz -yl

Moreover, the last inequality also holds with p(x) replaced by p(y).
ii) If K* denotes the R vector valued kernel of the adjoint of the classical Riesz
operator, then

K (2, 2) = K*(2,2)] <

22 _L\2" %
(22) cd_1 (/ V(uzl_ldu+ 1 (m z> )
|z — 2] B(z,o—z|/a) [ — 2] |z — 2| \ p(x)

whenever |z — z| < p(z).
iii) When q > d, the term involving V' can be dropped from inequalities (21) and
(22).

For the proof of the following lemma, see [1].
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Lemma 4. Let V € RH, with g > d/2 and € > g. Then for any constant Cy there
exists a constant Cy such that

1% 2—d/q
/ 7(1&1176 du < Core?2 (r ) ,
B(z,Cir) |u - l" p(:r)
if 0 <r < p(x).

Theorem 3. Let V € RH,.

i) If ¢ > d, the operators R and R* are bounded on LP(w), 1 < p < oo, for
w € AP, and are of weak type (1,1) for w E AP

i) If d/2 < g < d, and s is such that 1 = = — = the operator R* is bounded on
LP(w), for 8 <p < oo and w € Ap/ ¥ and hence by duality R is bounded on

LP(w), for 1 < p < s, with w satisfying w T € Ap/ ,. Moreover, R is of
weak type (1,1) for w® € AL
Proof. First of all, notice that there is no need to consider ¢ = d since in that case
there exists an € > 0 such that V€ RHg ..
We begin giving estimates for R*.
The local and global operators associated with R* are

(23) Rif(2) = /B K
z,p(x

and
R f(x) = / K (2, 1) () dy
B(z,p(x))°

respectively, where the first integral should be understood in the sense of principal
value.
Now with the notation of Theorem 1 we write

(24) R*f Rlocf + R, lobf + (Rikoc - Rroc)f'
As a consequence of Theorem 1 the first term is bounded on LP(w) for w € Ag’loc,
1 <p < o0, and of weak type (1,1) for w € A?'°°. Since w € AP C Az’loc,

1<p<oo,and w € Ap’ C A”’IOC s’ < p < 0o, all the conclusions for R} . hold.
For the term R*lobf of (24) we use (21) to obtain

Rowf @l < [ WE@nlfldy £ 06 + o)
B(z,p(x))¢
where
0 2 kN
= o .l
k:o B(z,2%p(x))
and

= 2-kN / / V(w)
T —=rdu | [f(y)|dy.
Z (2kp(z))d=t B(x,2% p(x)) < B(a,2%p(x)) |0 —y[!

Notice that g; is the same as (20) for M = N +d. Then its boundedness, for N
large enough, follows from the arguments given there.
Regarding g2, according to Lemma 3, we only have to consider % <g<d.
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We consider a covering by critical balls as in the proof of Theorem 2. With the
notation there, for x € Q; we have B(z,2%p(z)) C Q?, and so

V(u)
du S Li(xgeV)(v),
/B(z,ka(x)) ‘U_y‘dil ! Q;‘

where I; is the classical Fractional Integral of order 1. Therefore,

S (@) )
lg2llzr(w) S kZ:O2 Z (2% p(z5))Pd=1) </Q§ Il(XQ?V)f>

J

1/p

If we choose v such that % + % + % =1, then by Holder’s inequality,

1/~
/kfl(XQ;sV)f < [HgeVllslixgs Fllee ) (/Qk wm’) :

QJ J

Recall that V € RH, for some ¢ > 1 implies that V satisfies the doubling
condition, i.e., there exist constants > 1 and C such that

/ VgCtd/‘/ vV,
tB B

holds for every ball B and ¢ > 1. Therefore, due to the boundedness of I; from L4
into L®, and the assumptions on V,

In0gsVle 5 Ixggle s 105 [0 v

S 2’“‘“‘|Q§“I’”q'/~ V< o) o)

Qj
where the last inequality follows from the definition of p (see (8)). Hence,
lg2llLe(w) S
s p/v 1/p
S grkvdar) (g @) / w1/ / (P
= 7 ol \Jay &

Since w € A”?

s’ for some 6 > 0, and % = £ — 1 the last expression is bounded by

S

1/p

Sttt (S5 ] S [l Yoz,
k=0 7 Jak k=0

where the last inequality is due to Proposition 2. Finally, the series converges if we
choose N large enough.

Now we have to deal with the term (R} . — R;..)f of (24). By using estimate
(22), we have

|(Rice = Rice) f(2)| < ha(z) + ha(z)
where

hy(z) = p(x)_2+d/q/ &dz

B(z,p(x)) ‘Q? - Z|d_2+d/q
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ho(z) = / Lﬁ_l / L()i_ldu dz.
B(x,p(x)) |z — 2| B(z,|z—z|/4) lu — z]

For hq we have

and

o0

(o) < pla) 200y @k p(a) 2l i
k=1 B(z,27%p(z))
5 Mlocf(x)'
Hence, as a consequence of Theorem 1, we obtain all the needed results for h.

To deal with hs, according to Lemma 3, we only have to consider % <g<d.

Let us take a covering {Q,} as before. For each j and k there exist 2% balls
of ridio 2% p(x;), BI* = B(xl",27%p(x;)) such that Q; C U%ileljk C 2Q; and
212:1 Xpik < 2¢. Moreover, this construction can be done in a way that for each k

l .
the family of a fixed dilation {Blj’k}jJ is a covering of R? with

Qdk

(25) szélj,k <C

jol=1

with the constant C' independent of k. To our purpose we take the dilation Bl] -
5coBIF.
Splitting into annuli,

hg(l‘) S ZQk(d_l)hgyk(l‘),
k=0

where

- V(u)
has(e) —dpla) 1 ey V@) g
B(z,2p(x)) B(zjo—z|/4) [u— 2|41
Observe that if z € Blj’k,
harle) S ples) [ 111GV
Blj,k 1

but

1/
Lm0 < GVl ow [ o)
Blj,k L 1 1 Blj’k

Using that I; is bounded from L9 into L?, and Lemma 4,

15 GVl S Ixge Vg

R
B+

—2+d/q.

A

(26)

N

p(z;)
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Therefore, from the above estimate, using that w € A7)T and £ = £ —1,

w(szk) / - P

Ihasllve S Y =g ([ o) el

P(w) ;p(ﬂcj)p(l-%d/ﬂ Bk By Lr(w)
1/p

—k(1+2
27 M S g f I )
7l

A

—k(1+ 2
< 275 )l o s

where in the last inequality we have used the finite overlapping property (25).
Now,

(o)
Ihellow) S D25 lhaklirw) S Loy,
k=0
and the summability of the series is due to ¢ — 2 < 0.
In this way we have proved all the stated boundedness for R*. By duality we
obtain the results for R, except the weak type (1, 1) for both i) and ii).
To take care of that we decompose R in a slightly different way.
We write

(27) Rf = Rloc*f + Rglob*.f + (Rloc* - Rloc*)fv

where given an operator S, Sioc f(2) = S(fxge) (@), with B2 = {y : |z—y| < p(y)},
and Sglob* =5 - S]OC*.
With this notation we have

(28) (7-\)/glolc»")>k = Rglobv
and
(29) (Rloc* y Rloc*)* < Rikoc - Rikoc'

We claim that the first term of (27), Rioc-, is of weak type (1,1) for w € A?'°,
This can be proved as for Rjs. in Theorem 1. A careful look reveals that the clue
fact is that B(z,p(z)) C Qj for x € Q;. So the proof of the weak type (1,1) for
Rypc+ follows as before changing Qj by 8¢3@Q;, since in our situation it is easy to
prove that Bf C 8¢2Q; for z € Q.

For the other two terms we proceed by duality. In view of (28) and (29) it is
enough to show that Ry, and Rj,. — R}, are bounded on L3y, = {f : fwte

L>°} for w such that w € AP under the assumption ¢ > d, or w® € A?> for

% < q<d, % = % — é. We shall do that using the same estimates already obtained

in the case p < cc.

First, let us check that ||g1w ™!« and ||gaw ™|« are bounded by || fw ™! s. In
fact, since as before, for x € Q;, B(x,2"p(z)) C Q% and p(z) = p(x;), we get for
we AP,

A

91w ™ oo
k=0 J Qj

S 20D sup [ ) supw?) / £l
_ g )

o0
S lfw o D270,
k=0
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and the last sum converges taking N large enough.
As for go we only have to consider the case g < g < d. Using the same estimates
as before

e € 302 (sup Y (V)
gQw— 0 ~AY 27 bup% / Il X”?V f )
i (25p(ay)@=D \ Jgr T

k=0

but for each k and j,

1/s’
[ 00 < e RVl ( / w“) -
Q¥ g ! Q5

Using (26) and that w* belongs to A{"> the conclusion follows taking N large
enough.

With similar techniques the boundedness of h; and hy on L>7" can be achieved
and the proof is finished. O

Now, we present an important property of the classes of weights in A7>°° that
will allow us to improve Theorem 3 part ii).

It is well known that a weight in A,, also belongs to A,_. for some ¢ > 0.
Following the proof in [2], it becomes clear that the classes Ag’loc share this property.
In the next proposition, we show that it also holds for the intermediate classes A£°°.

Proposition 5. If w € A, 1 < p < oo, then there erists ¢ > 0 such that
w e AP
As in the classical theory of weights, the previous proposition is a consequence

of the following property that resembles a reverse Holder property.

Lemma 5. If w € A*°, 1 <p < oo, then there exist positive constants §, n and

C such that
el 2o () (i)
— w <C|— w 1+——) ,
(lBl B 1B| /5 p(x)
for every ball B = B(z,T).

Proof. Since w € Af*°, also w € Agvloc and thus there exist constants ¢ and C,
independent of B, such that

) (1) <o

for every ball B = B(x,r) with r < p(z). (This can be seen following the classical
proof for 4, in [2]).

On the other hand, let B = B(z,r), with r > p(z) and F = {j : Q; N B # 0},
where Q; = B(zj, p(z;)) and {z;}; is the sequence of Proposition 2.

For j € F, using (10) and Q; N B # () we have

( )<22<1 . )N§+
ple;) < 2¢ + T.
! 0 p(x)

Therefore

(31) Ujer@; C ¢, B,
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_No
with ¢, = 4¢3 (1 + -5 )) MO Also from (10),

1 ro\ Mo
(32) ple) 2 o) (1 n p(m)) ,

for every j € F.
Now let § be the constant in (30). By using Proposition 2,

(=5 )

JEF
(33) S w(@)Q;T T
JEF
< wler B)p(a) s (1 ; M) ¢

where in the last inequality we have used (32), the finite overlapping property ii)
in Proposition 2 and then (31).
Finally, since w € Ag for some 6, we have

, O\ P e\ %P
werm) 5 eipp ([ o) T (1el)
c.B pP\T

(34) T e S 22
s wim (14755)
Combining (33) and (34) we obtain the desired inequality with
dé
n= 9p+(0+d)NO (N0+1)m-

O

Corollary 2. Let ¢o = sup{q : w € RH,} and so such that % = q% — %. If

w E Ap’/ ., then the operator R* is bounded on LP(w), for s < p < oo. By duality,
ifw 1 € Ap e then R is bounded on LP(w), for 1 < p < sg. Moreover, R is of
weak type (1,1) for w € AL

Proof. In terms of sy the part ii) of Theorem 3 for R* can be re-written as: R* is

bounded on LP(w), whenever sg < p < oo and w € Us<s<)Ap/5/ But, Proposition 5

implies AZ /0506 = US<SOAZ /OS? Regarding the weak type of R we notice that if

w® € AP™ then w ¢ € AL for some € > 0 due to Proposition 5. Therefore we
are in the hypothesis of Theorem 3. O

5. THE FRACTIONAL INTEGRAL

Let us remind that the £-Fractional Integral of order 0 < o < d can be written

as
e dt
[ wamer ) .
R4 JO
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Theorem 4. For 1 < p < d/«, the operator I, is bounded from LP(w) into
LY (w”/?) for w"/P ¢ Affoﬁ, with 1 = % — 2 and of weak type (1, ;%) when

wTs € AP,
Proof. As before, for each « € R% we split Z,, as
(35) Iaf = (Ioc)locf + (Ia)globf-

where (Ia)locf(x) = IanB(w,p(w))(x) and (Ia)globf('r) = ZanB(Lp(w))“(x)'

It follows from (18) that the first term is bounded by (I )iocf(x), for f non-
negative. Therefore, the conclusion for the first operator is a consequence of The-
orem 1, and A‘l’foﬁ c A’f;lropj/.

To deal with the second term of (35) we obtain a point-wise estimate by an
expression like (20). Indeed, using Lemma 2, for any M and N,

> d
@t < [T sl §
x,p(x))°

e o —N
/ \f(y)|M dy / <1+ \/¥> J(M—d+a)/2 ﬂ
B(a,p(z))e 1T =Y 0 p(z) t

Now, choosing N > M > d — «,

A

N

/°° <1 N ﬁ) (M —dra)/z 4
0 p(z) t

/p(ac) t(M—d+o¢)/2£ + p(x)N/oo t(—N—HW—d—i—a)/Zﬂ
0 ’ pla)? ¢

IN

M —d+a

A

p(z)

Therefore, splitting into annuli,

o0

(Za)gionf (2)] S pla)= ey 27k £ dy.
k=1 2*B:

Now we argue as we did with g1 in the proof of Theorem 2. Denoting Qf = Qij,
since w € Ai’f% for some 6 > 0, we have for p > 1,
P

”(Ia)globeL”(w”/P)

1/v

s S [y / pla) @ ( / fl) w?/? () da

k=0 j Qi 2B

00 v/p' v/p H
< Y ok Zp(g;j)V(a—d) (/k wP ”’) w’/?(Q) (/A |f|pw>

k=0 J @ ©

N v/p 1/v
< 227k(M7d+a70) Z (/ |f”w>

k=0 J 5
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Finally, since v > p and using Proposition 2, the last expression is bounded by

i 2—k(1¥f—d—9+a+N1) ||fHLP(w)
k=0
Choosing M large enough we are done.
For p =1, (Is)glob is also strong type (1, 7%) and it follows in the same way as

in the case p > 1 with the obvious changes.
O

6. THE ASSOCIATED SQUARE FUNCTION

Let us point out that in [3] the authors introduce a Square Function associated
to L, that after a change of variables can be written as (5).
For this operator we have the following result.

Theorem 5. For 1 < p < oo the operator g is bounded on LP(w), when w € AP
and of weak type (1,1) when w € AP

Proof. As before, we define
gloc(f)(x) = g(fXB(m,p(:L’)))(x) and gglob(f)<x) = g(fXBC(:c,p(z)))(m)v
with B, = B(z, p(z)), and thus
I8 ey < lgoc()llzew) =+ 18g10n (FHEp (w)-

We start with ggion. Denoting by g the kernel of £e~* from (2.7) of [3], for
any positive integer N we have

Cy t t NN w2
(36) lg:(z, )| < prToEs] <1+p(x)2+p(x)2> e~ ot .

Therefore, for any M >0, and B, = B(x, p(x)),

/ av( u)f (y)dy
|z—y|>p(x)

-N _ |z y\
< i ( ) / )y
lz—y|>p(z
Moa ( ) N 1wl ,
’S tz 2 M
lz—y|>p(x) |1' y|
tMQfd —N oo
< 1+ ) 9—kM
o (1 567 22 L,

S e (14 p(a:)2> o)

where g; is defined in (20).
Hence,

Fglob (f) ()

N
Q
=
—
&
7
o\
8
7N
=
S| =+
SN—
[V
~——
3
2
/7~
—
+
B~
—
S| =
e
~—
b
2
~&
~_
—
~
()

A
=
O
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choosing M and N such that M —d > 0 and 2N > M — d. Hence, the estimates

for gglon follows from those for g;.
To deal with g, we write

(37) gloc(f)(z) S I(l‘) + gloc(x) + II(x),

where g, is the localization of the classical square function as in Theorem 1,

1/2

p(x)? 2 /
I(x) = /
0

tdt ,
where §; is the kernel of %e

II(x) = /( .
p(x

By (36) with N = 1/2,

/l I<n( )[Qt(x’y) — Ge(@,y)]f (y)dy

tA and
) 1/2

tdt

/ au(z, 9) f (w)dy
|z—y|<p(x)

_lz—y)?

o< (7 (p i
II(z) < /p(w( : > (/lmy@(w) /2 |f(y)|dy> dt
Tioe(f)(z)
)

([ (#2y)
S Tod )

As we have already seen the last operator is bounded in LP(w) for w € Ag’loc.
For I(z), as in [3] (equation 5.25) we use the following consequence of the per-
turbation formula

A

dt€ dt

tAY, —tp #/2 d (t—s)Ayy,—sL ' (t—s)A d —sL
e3tVe 2L 4 —e Ve ™~ds + e V—e™""ds.
o dt t/2 ds

d —tL d etA

Let uscall K, K5, K3, the kernels of the first, second and third term respectively.
Our arguments will be based on the inequality

(38) e-elol® -0l < e_%lﬂlze_%‘o‘J“ﬁlQ, o, eR?, c:min{mg},

and the estimate

1 vi°
(39) y oi(x —2)V(2)dz < : (p(x)) ,

for some 6 > 0 and t < p(z)%, where ¢;(z) = 7z ® (%), with ¢ any rapidly
decreasing function, (see (2.8) in [3]).

For K1, by using (18), (38) (witha =b = 2%, a=z—zand f=z—y) and (39),
we get
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1 |z—=|2 _lz—yl?
Kiryt) S o [ e V(e s
Rd
1 _le—y? _lz—yl?
S oge V(z)em 2 dz
t Rd
5
1 Vit _le—yl?
< o () e
tatl \ p(z)

For K5 we use first (17), (18), together with ¢/2 < t — s < t for 0 < s < t/2;
then we apply inequality (38) witha = &, b= -, a=x—z and 3 = z — y, to get

5¢7 457
1 t2 le—zI? ly==?
|Ka(z,y,t)] < t%ﬁ/o Sdﬁ/]Rde 5t V(z)e % dzds
(40) s Lt /”2 7 | Ve ded
e 1! — z)e s zds
B
1 ( ﬁ) -yl
< e () e
tz 1 \ p(y)

where in the last inequality we have used (39). Noting that for |z — y| < p(x) we
have p(z) =~ p(y), we obtain a similar estimate as for Kj.

Finally, we proceed in a similar way for ‘K3. By (36) and performing a change
of variables, we get

< t/2 1 =22 7\6347\2
|K3(2,y,t)| < /0 W/}Rde 25 V(z)e €09 dzds.

Since t/2 <t —s < t for 0 < s < t/2, we arrive to an expression similar to the first
line of (40) exchanging the roles of x and y; and with a different constant in the
exponential, and then we proceed as there.
From the above estimates, we have
)

1 t z—y|?
| K (2, y,t) [ S d(\[> e ,
tz 1 \ p()

for4 =1,2,3, and some € > 0.
Therefore,

/ﬂ(ﬂi)2
0

1/2

tdt

2
/ K (e, )11 () dy
|z—y|<p(x)

/: ('T)
SJ IOCJ (q")
f()l 1= 172,3, and lhuS

(41) 5 1z

—ul2
_elz—ul

2
dt
/l e T f(y)dy

t

A

I(x) S Tioef(2).
Coming back to (37), from the previous estimates

Hloc (CL’) S EZCf(x) + 8loc (IL'),

then the desired estimates follow from Theorem 1 since Ag"’o - Az’loc.
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