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CLASSES OF WEIGHTS RELATED TO SCHRÖDINGER
OPERATORS

B. BONGIOANNI, E. HARBOURE AND O. SALINAS

Abstract. In this work we obtain boundedness on weighted Lebesgue spaces

on Rd of the semi-group maximal function, Riesz transforms, fractional inte-

grals and g-function associated to the Schrödinger operator −∆ + V , where
V satisfies a reverse Hölder inequality with exponent greater than d/2. We

consider new classes of weights that locally behave as Muckenhoupt’s weights
and actually include them. The notion of locality is defined by means of the

critical radius function of the potential V given in [8].

1. Introduction

Let us consider the Schrödinger operator on Rd with d ≥ 3,

L = −∆ + V,

where the potential V is non-negative, non-identically zero, and for some q > d/2
satisfies the reverse Hölder inequality

(1)
(

1
|B|

∫
B

V (y)q dy
)1/q

≤ C

|B|

∫
B

V (y) dy,

for every ball B ⊂ Rd. The set of functions with the last property is usually denoted
by RHq.

Since V ∈ RHq implies V ∈ RHq+ε for some ε > 0, notice that the assumption
q > d/2 is equivalent to q ≥ d/2.

We will be interested in weighted Lp inequalities for the following operators
associated to L:

• Maximal operator of the diffusion semi-group

(2) T ∗f(x) = sup
t>0

e−tLf(x).

• L-Riesz potential or L-Fractional Integral

(3) Iαf(x) = L−α/2f(x) =
∫ ∞

0

e−tLf(x) tα/2
dt

t
, 0 < α < d.

• L-Riesz transforms

(4) R = ∇L−1/2,
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2 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

and their adjoints
R∗ = L−1/2∇.

• L-Square Function

(5) g(f)(x) =

(∫ ∞
0

∣∣∣∣ ddte−tL(f)(x)
∣∣∣∣2 t dt

)1/2

.

It is well known that for the classical case of L = −∆, the maximal operator of
the heat diffusion semi-group, the Riesz transforms and the g-function are bounded
on Lp(w), 1 < p <∞, for w in the Muckenhoupt Ap classes defined by the inequality

(6)
(∫

B

w

)1/p(∫
B

w−
1
p−1

)1/p′

≤ C|B|,

for every ball B ⊂ Rd, and of weak type (1, 1) for weights satisfying the A1 condition

(7) w(B) sup
B
w−1 ≤ C|B|,

for every ball B ⊂ Rd.
Also, the classical Fractional Integral of order 0 < α < d, is bounded from Lp(w)

into Lν(wν/p), 1
ν = 1

p −
α
d , when wν/p ∈ A1+ ν

p′
, and of weak type (1, d

d−α ) for

weights such that w
d

d−α ∈ A1.
As we shall see the classes of weights for Schrödinger operators under the stated

hypothesis on V will be in general larger than Muckenhoupt’s. It is well known that
the operators derived from L behave “locally” quite similar to those corresponding
to the Laplacian (see for example [3] or [8]). This notion of locality is given by the
critical radius function

(8) ρ(x) = sup

{
r > 0 :

1
rd−2

∫
B(x,r)

V ≤ 1

}
, x ∈ Rd,

which, under our assumptions, is easy to check that 0 < ρ(x) <∞ (see [8]).
Our new classes of weights are given in terms of this critical radius function.

More precisely, given p ≥ 1 we introduce the class Aρ,∞p = ∪θ≥0A
ρ,θ
p , where Aρ,θp is

defined as those weights w such that(∫
B

w

)1/p(∫
B

w−
1
p−1

)1/p′

≤ C|B|
(

1 +
r

ρ(x)

)θ
,

for every ball B = B(x, r).
Clearly, the classes Aρ,θp are increasing with θ, and for θ = 0 they are the Muck-

enhoupt classes Ap. Moreover, the inclusions are proper. Take for instance, ρ ≡ 1
and w(x) = 1 + |x|γ . Now, for γ > d(p− 1), the weight w belongs to Aρ,∞p , but it
is not in Ap.

In this work we will show that the operators (2) and (5) defined above are
bounded on Lp(w) for w in Aρ,∞p , 1 < p <∞, and of weak type (1, 1) for w in Aρ,∞1

(see Theorem 2 and Theorem 5). As for the Riesz transforms (4) we get the same
results when the potential satisfies (1) with q ≥ d. However, when d/2 < q < d,
the range of p must be restricted and also the classes of weights shrink when q get
closer to d/2 (see Theorem 3 and Corollary 2). Indeed, in [8] it is shown that for
w = 1 the given range is optimal.
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CLASSES OF WEIGHTS RELATED TO SCHRÖDINGER OPERATORS 3

Regarding the Fractional Integral (3) we prove that it maps Lp(w) into Lν(wν/p)
for weights such that wν/p ∈ Aρ,∞1+ ν

p′
, 1 < p ≤ d/α, 1

ν = 1
p −

α
d , and of weak type

(1, d
d−α ) for weights such that w

d
d−α ∈ Aρ,∞1 .

We achieve these results through the comparison of the new operators with the
classical ones when restricted to local regions given by ρ.

In this way we are led to study weighted Lp inequalities for the ρ-localized
classical operators. In this setting larger classes of weights appear, namely the
classes Aρ,loc

p defined as those weights that satisfy (6) for balls B(x, r) with r ≤ ρ(x).
We summarized all of these results in Section 2, since we believe they are interesting
by themselves.

The four remaining sections are devoted to state and prove weighted Lp in-
equalities for the maximal operator of the semi-group, the Riesz transforms, the
Fractional Integral and the Square Function, respectively.

2. Localized classical operators and weights

Let us denote by T ∗, Iα, R, and g, the classical versions of the operators consid-
ered in the introduction, that means, those defined by (2), (3), (4) and (5), when
L = −∆. Let us also consider M , the Hardy-Littlewood maximal function.

If S stands for any of the above operators we denote by Sloc, the ρ-localization
of S,

(9) Sloc(f)(x) = S(fχB(x,ρ(x)))(x).

Our aim is to show weighted inequalities for Sloc, but first we give some properties
of ρ that we will use later.

Proposition 1 ([8]). If V ∈ RHd/2, there exist c0 and N0 ≥ 1 such that

(10) c−1
0 ρ(x)

(
1 +
|x− y|
ρ(x)

)−N0

≤ ρ(y) ≤ c0 ρ(x)
(

1 +
|x− y|
ρ(x)

) N0
N0+1

,

for all x, y ∈ Rd.

A ball of the form B(x, ρ(x)) is called critical. Inequality (10) implies that if
σ > 0 and x, y ∈ σQ, where Q is a critical ball, then

(11) ρ(x) ≤ Cσρ(y),

where Cσ = c20(1 + σ)
2N0+1
N0+1 , and c0 is the constant appearing in (10).

In what follows we will call critical radius function to any positive continuous
function ρ that satisfies (10), not necessarily coming from a potential V . Clearly,
if ρ is such a function, so it is βρ for any β > 0.

As a consequence of (11) we derive the following result.

Proposition 2 (See [4]). There exists a sequence of points xj, j ≥ 1, in Rd, so
that the family Qj = B(xj , ρ(xj)), j ≥ 1, satisfies

i) ∪jQj = Rd.
ii) For every σ ≥ 1 there exist constants C and N1 such that,

∑
j χσQj ≤ CσN1 .

Now we turn to present some properties of weights in the class Aρ,loc
p defined

in the previous section, i.e., those weights that satisfy (6) for balls B(x, r) with
r ≤ ρ(x).
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4 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

We define Dρ as the set of weights w for which there exists a constant C such
that for any pair of balls B0 = B(x0, r) and B1 = B(x1, r/2), with B1 ⊂ B0 and
r ≤ ρ(x0),

w(B0) ≤ Cw(B1).

Clearly for any 1 ≤ p <∞, w ∈ Aρ,loc
p implies w ∈ Dρ.

Proposition 3. For every β > 1, Dρ = Dβρ.

Proof. We only have to prove Dρ ⊂ Dβρ. Let w ∈ Dρ, and consider two balls
B0 = B(x0, r) and B1 = B(x1, r/2), with B1 ⊂ B0 and ρ(x0) ≤ r ≤ βρ(x0), we
must prove that there exists a constant Cβ such that

(12) w(B0) ≤ Cβ w(B1).

First observe that for x ∈ 2B0, by property (10) we have

ρ(x) ≥ 1
c0
ρ(x0)

(
1 +

2r
ρ(x0)

)−N0

= ρmin.

Now let us consider a covering of B0 by balls Pj = B(yj , ρmin/4) such that
i) Pj ∩B0 6= ∅, for every j.
ii) 1

2Pj ∩
1
2Pk = ∅, for k 6= j.

Therefore, for any j and k such that Pj ∩ Pk 6= ∅, we have

w(Pj) ≤ w(4Pk) ≤ C2w(Pk),

where in the last inequality we have used that w ∈ Dρ since the radius of 4Pk is
ρmin ≤ ρ(yk), which in turn holds because yk ∈ 2B0.

Also, property ii) implies that the number of balls {Pj} is bounded by C1β
d(N0+1),

with C1 depending only on the dimension d and c0. Finally, if Pj1 denotes a member
of the family such that x1 ∈ Pj1 ,

w(B0) ≤
∑
j

w(Pj) ≤
∑
j

C2C1β
d(N0+1)

w(Pj1) ≤ C1β
d(N0+1)C2C1β

d(N0+1)
w(B1),

since Pj1 ⊂ B1. �

Corollary 1. For 1 ≤ p <∞ and β > 1, Aρ,locp = Aβρ,locp .

Proof. We first prove tha case 1 < p <∞. Assuming w in Aρ,loc
p , it is easy to check

that both w and w−
1
p−1 belong to Dρ and hence also to Dβρ, by Proposition 3.

Now, it is easy to derive w ∈ Aβρ,loc
p . In fact, if B = B(x, r) with r ≤ βρ(x), and

N the least integer such that 2N > β we have

w(B)[w−
1
p−1 (B)]p−1 . w

(
1

2N
B
) [
w−

1
p−1

(
1

2N
B
)]p−1

. |B|p,

where the last inequality holds since the radius of 1
2N
B is less than ρ(x).

Finally, we deal with the case p = 1. For B and N as above. We choose a ball
BN ⊂ B with radius r

2N
such that supBN w

−1 = supB w−1. Using that w ∈ Aρ,loc
1

implies w ∈ Dρ, and hence w ∈ Dβρ, we have

w(B) sup
B
w−1 . w(BN ) sup

BN

w−1 . |BN | . |B|.

�
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CLASSES OF WEIGHTS RELATED TO SCHRÖDINGER OPERATORS 5

Notice that, even all the classes Aβρ,loc
p are the same, the membership constant

may increase with β, otherwise the weight would be in Ap.
Next we give a general result that can be applied to prove the boundedness of

the localized classical operators. To this end, we consider a covering of balls {Qj}
such that the family of a fixed dilation of them, {Q̃j}, has bounded overlapping
(for instance, a covering associated to ρ like a in Proposition 2).

For a given operator S, we define

(13) S0(f) =
∑
j

χQj |S(fχQ̃j )|.

Proposition 4. Let 1 ≤ p ≤ ν < ∞, and a weight w on Rd with the following
property: for each j, w|Q̃j admits an extension wj to Rd such that

(14) S : Lp(wj) 7→ Lν(wν/pj )

boundedly with a constant independent of j. Then

S0 : Lp(wj) 7→ Lν(wν/pj )

continuously. If for p = 1 the assumption (14) is changed by weak type (1, ν), the
corresponding weak type can be concluded for S0.

Proof. Let Ij = {k : Qk ∩ Qj 6= ∅}. Due to the bounded overlapping property of
the family Qj , and the assumptions on S and wj ,

‖S0f‖νLν(wν/p) .
∑
j

∑
k∈Ij

∫
Qk∩Qj

|S(χQ̃kf)|νwν/p

.
∑
k

∑
j∈Ik

∫
Qk

|S(χQ̃kf)|νwν/p

.
∑
k

∫
Rd
|S(χQ̃kf)|νwν/pk

.
∑
k

(∫
Q̃k

|f |pwk
)ν/p

.

(∫
Rd
|f |pw

)ν/p
,

where in the last inequality we have used that p ≤ ν and the bounded overlapping
property of the family {Q̃j}.

To prove the weak type statement, we proceed in a similar way to get

{|S0(f)| > λ} ⊂ ∪j ∪k∈Ij Qj ∩Qk ∩ {|S(fχQ̃k)| > λ/M}
⊂ ∪kQk ∩ {|S(fχQ̃k)| > λ/M},
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6 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

where M is such that
∑
k χQk ≤M . Hence,

wν({|S0(f)| > λ}) .
∑
k

wνk({|S(fχQ̃k)| > λ/M})

. λ−ν
∑
k

(∫
Q̃k

|f |wk
)ν

. λ−ν
(∫

Rd
|f |w

)ν
.

�

We say that a weight w defined on a ball B0, belongs to Ap(B0) if the inequality
(6) is satisfied for every ball B ⊂ B0.

We will use the following fact concerning extension of weights. For related results
see also [5].

Lemma 1. Given a ball B0 and a weight w ∈ Ap(B0), 1 ≤ p <∞, there exists an
extension w0 ∈ Ap(Rd) with the same constant.

Proof. By means of a conformal mapping it is equivalent to work with cubes. For
that case a construction process was given in [6], namely proceeding by reflecting
the weight to neighboring cubes of the same size. �

Now, we are ready to prove the main result of this section.

Theorem 1. Let ρ a function satisfying (10) then:

a) Mloc, T ∗loc, Rloc and gloc are bounded on Lp(w), 1 < p <∞, for w ∈ Aρ,locp , and
they are of weak type (1, 1) for w ∈ Aρ,loc1 .

b) For 0 < α < d, (Iα)loc is bounded from Lp(w) into Ls(ws/p), 1 < p < d/α,
1
s = 1

p −
α
d , for ws/p ∈ Aρ,loc1+ s

p′
and it is of weak type (1, d

d−α ) for w
d

d−α ∈ Aρ,loc1 .

Proof. Let σ = c02
N0
N0+1 , with N0 and c0 as in Proposition 1. Let {Qj} be the

family given by Proposition 2 and set Q̃j = σQj . Clearly, we have

(15) ∪x∈QjB(x, ρ(x)) ⊂ Q̃j .

Let w ∈ Aρ,locp , 1 ≤ p <∞. Due to Corollary 1, w ∈ Aσρ,locp , and then, for any j,
w|Q̃j ∈ Ap(Q̃j), with a constant independent of j. Applying Lemma 1, we obtain
for each j an extension wj such that wj ∈ Ap(Rd), and uniformly in j.

It is well known that M , T ∗, R and g are bounded on Lp(w), 1 < p < ∞, for
w ∈ Ap, and weak type (1, 1) for w ∈ A1. Hence, we get that M0, T ∗0 , R0 and g0,
associated to the covering {Qj} as in (13), are bounded in Lp(w), 1 < p < ∞, for
w ∈ Aρ,locp , and weak type (1, 1) for w ∈ Aρ,loc1 , in view of Proposition 4.

The conclusion of a) follows immediately for Mloc and T ∗loc since

Mlocf(x) ≤M0f(x) and T ∗locf(x) ≤ T ∗0 |f |(x),

as a consequence of (15).
Regarding R and g, since they are not positive operators, we have to be more

careful.
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CLASSES OF WEIGHTS RELATED TO SCHRÖDINGER OPERATORS 7

First, for x ∈ Qj , by (15),

|Rlocf(x)−R(χQ̃jf)(x)| .
∫
Q̃j\B(x,ρ(x))

|f(y)|
|x− y|d

dy .
1
|Q̃j |

∫
Q̃j

|f |,(16)

since ρ(x) ' ρ(xj) when x ∈ Qj . Therefore, for 1 < p <∞,

‖Rlocf‖pLp(w) .
∑
j

∫
Qj

(
1
|Q̃j |

∫
Q̃j

|f(y)| dy

)p
w + ‖R0f‖pLp(w),

and the first term can be bounded by,∑
j

w(Q̃j)
[
w−p

′/p(Q̃j)
]p/p′ 1

|Q̃j |p

∫
Q̃j

|f |pw .
∑
j

∫
Q̃j

|f |pw

.
∫

Rd
|f |pw,

where we have used again Corollary 1. Therefore, from Proposition 4 we are done
for 1 < p <∞.

For the case p = 1, again from (16) and w ∈ Aρ,loc
1 we have for each j,

w({x ∈ Qj : |Rlocf(x)−R(χQ̃jf)(x)| > λ}) . 1
λ

∫
Q̃j

|f |w.

Besides, from Proposition 4,

w({x ∈ Qj : |R0χQ̃jf(x)| > λ}) . 1
λ

∫
Q̃j

|f |w.

Therefore, summing over j we get the weak type (1, 1).
Let us remind that for the heat kernel ht(z) = (4πt)−

d
2 exp(− |z|

2

4t ), we have

(17)
∣∣∣∣ ddtht(z)

∣∣∣∣ . t−
d
2−1 exp(−|z|

2

5t
).

Consequently, for x ∈ Qj ,

|glocf(x)− g(χQ̃jf)(x)|2 .
∫ ∞

0

(∫
Q̃j\B(x,ρ(x))

e−
|x−y|2

5t

td/2+1
|f(y)|dy

)2

t dt.

Using that |x − y| ≥ ρ(x) ' ρ(xj) when x ∈ Qj and y /∈ B(x, ρ(x)), the last
expression is bounded by∫ ∞

0

e−2
ρ(x)2

5t

td+1
dt

(∫
Q̃j

|f |

)2

.

(
1
|Q̃j |

∫
Q̃j

|f |

)2

.

Taking square root we obtain the same point-wise bound as in (16), and the proof
follows in the same way as above for R.

Finally, b) can be derived easily from Proposition 4 as for Mloc and T ∗loc, since
(Iα)locf(x) ≤ (Iα)0f(x), for f ≥ 0.

�

Remark 1. Let us note that, following standard arguments, the condition Aρ,loc
p is

also necessary for the boundedness of Mloc in Lp(w).
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8 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

3. The maximal of the semi-group

We begin this section with an estimate of the kernel of the operator e−tL, t > 0,
that will be denoted by kt.

As it is well known

(18) kt(x, y) ≤ ht(x− y),

where ht is the classical heat kernel. Moreover, we have the following result.

Lemma 2 ([7]). Given N > 0, there exists a constant CN such that for all x and
y in Rd,

kt(x, y) ≤ CN t−d/2 e−
|x−y|2

5t

(
1 +

√
t

ρ(x)
+
√
t

ρ(y)

)−N
.

Now we present the main result of this section.

Theorem 2. For 1 < p <∞ the operator T ∗ is bounded on Lp(w) when w ∈ Aρ,∞p ,
and of weak type (1, 1) when w ∈ Aρ,∞1 .

Proof. First, for x ∈ Rd we denote Bx = B(x, ρ(x)) and thus

(19) T ∗f(x) ≤ T ∗locf(x) + T ∗globf(x),

for all f in Lp(w), where T ∗locf(x) = T ∗fχBx(x) and T ∗globf(x) = T ∗fχBcx(x).
To deal with the first term of (19) we use (18) to obtain,

T ∗locf(x) . T ∗locf(x).

Hence, the Lp(w) boundedness and the weak type (1, 1) for T ∗loc follow from Theo-
rem 1 since Aρ,∞p ⊂ Aρ,locp .

For the second term of (19) we use again Lemma 2 and the estimate e−s . 1
sM/2

with d ≤M < N . Splitting into annuli, we obtain

T ∗globf(x) . sup
t>0

t−d/2
(

1 +
√
t

ρ(x)

)−N ∫
Bcx

e−
|x−y|2

5t |f(y)| dy

. sup
t>0

t−d/2
( √

t

ρ(x)

)M (
1 +

√
t

ρ(x)

)−N ∞∑
k=1

2−kM
∫

2kBx\2k−1Bx

|f(y)| dy

. g1(x),

with

(20) g1(x) = ρ(x)−d
∞∑
k=0

2−kM
∫

2kBx

|f |,

and the last inequality is easily obtained considering the cases 0 < t < ρ(x)2 and
t ≥ ρ(x)2.

Let {Qj} be a covering of critical balls given by Proposition 1 and we set Q̃j like
in the proof of Theorem 1 satisfying (15). Denoting Q̃kj = 2kQ̃j , then 2kBx ⊂ Q̃kj
and ρ(x) ' ρ(xj), whenever x ∈ Qj . Therefore, for 1 < p < ∞, by Hölder’s
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CLASSES OF WEIGHTS RELATED TO SCHRÖDINGER OPERATORS 9

inequality

‖g1‖Lp(w) .
∞∑
k=0

2−kM

∑
j

∫
Qj

ρ(x)−dp
(∫

2kBx

|f |
)p

w(x) dx

1/p

.
∞∑
k=0

2−kM

∑
j

ρ(xj)−dp
(∫

Q̃kj

w−p
′/p

)p/p′
w(Qj)

∫
Q̃kj

|f |pw

1/p

.

Since Qj ⊂ Q̃kj and w ∈ Aρ,θp for some θ > 0, the last expression is bounded by

∞∑
k=0

2−k(M−d−θ)

∑
j

∫
Q̃kj

|f |pw

1/p

. ‖f‖Lp(w)

∞∑
k=0

2−k(M−d−θ−N1),

where the last inequality is due to the control on the overlapping of the family {Q̃kj }
given by Proposition 2. For M large enough we are done in the case 1 < p <∞. For
the case p = 1 the same proof, with the obvious changes, gives strong boundedness
on L1(w) for w ∈ Aρ,∞1 . �

4. Riesz transforms

The operators R and R∗ were studied by Shen in [8]. There he proved that
when q > d, R and R∗ are bounded on Lp(dx), 1 < p < ∞. Moreover, he showed
that they are in fact Calderón-Zygmund operators and thus of weak type (1, 1).
However, if we only know that q > d/2, he obtains Lp boundedness on a smaller
range of p, depending on q, that he proves to be optimal.

These operators have singular kernels with values in Rd that will be denoted by
K and K∗ respectively. For such kernels, we have the following estimates that are
basically proved in [8].

Lemma 3. Let V ∈ RHq with q > d/2. Then we have:

i) For every N there exists a constant CN such that

(21) |K∗(x, y)| ≤
CN

(
1 + |x−y|

ρ(x)

)−N
|x− y|d−1

(∫
B(y,|x−y|/4)

V (u)
|u− y|d−1

du+
1

|x− y|

)
.

Moreover, the last inequality also holds with ρ(x) replaced by ρ(y).
ii) If K∗ denotes the Rd vector valued kernel of the adjoint of the classical Riesz

operator, then

|K∗(x, z)−K∗(x, z)| ≤

C

|x− z|d−1

(∫
B(z,|x−z|/4)

V (u)
|u− z|d−1

du+
1

|x− z|

(
|x− z|
ρ(x)

)2− dq
)
,

(22)

whenever |x− z| ≤ ρ(x).
iii) When q > d, the term involving V can be dropped from inequalities (21) and

(22).

For the proof of the following lemma, see [1].
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10 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

Lemma 4. Let V ∈ RHq with q > d/2 and ε > d
q . Then for any constant C1 there

exists a constant C2 such that∫
B(x,C1r)

V (u)
|u− x|d−ε

du ≤ C2 r
ε−2

(
r

ρ(x)

)2−d/q

,

if 0 < r ≤ ρ(x).

Theorem 3. Let V ∈ RHq.
i) If q ≥ d, the operators R and R∗ are bounded on Lp(w), 1 < p < ∞, for
w ∈ Aρ,∞p , and are of weak type (1, 1) for w ∈ Aρ,∞1 .

ii) If d/2 < q < d, and s is such that 1
s = 1

q −
1
d , the operator R∗ is bounded on

Lp(w), for s′ < p < ∞ and w ∈ Aρ,∞p/s′ and hence by duality R is bounded on

Lp(w), for 1 < p < s, with w satisfying w−
1
p−1 ∈ Aρ,∞p′/s′ . Moreover, R is of

weak type (1, 1) for ws
′ ∈ Aρ,∞1 .

Proof. First of all, notice that there is no need to consider q = d since in that case
there exists an ε > 0 such that V ∈ RHd+ε.

We begin giving estimates for R∗.
The local and global operators associated with R∗ are

(23) R∗locf(x) =
∫
B(x,ρ(x))

K∗(x, y)f(y) dy

and

R∗globf(x) =
∫
B(x,ρ(x))c

K∗(x, y)f(y) dy

respectively, where the first integral should be understood in the sense of principal
value.

Now with the notation of Theorem 1 we write

(24) R∗f = R∗locf + R∗globf + (R∗loc −R∗loc)f.

As a consequence of Theorem 1 the first term is bounded on Lp(w) for w ∈ Aρ,loc
p ,

1 < p < ∞, and of weak type (1, 1) for w ∈ Aρ,loc
1 . Since w ∈ Aρ,∞p ⊂ Aρ,loc

p ,
1 ≤ p <∞, and w ∈ Aρ,∞p/s′ ⊂ A

ρ,loc
p , s′ < p <∞, all the conclusions for R∗loc hold.

For the term R∗globf of (24) we use (21) to obtain

|R∗globf(x)| ≤
∫
B(x,ρ(x))c

|K∗(x, y)||f(y)| dy . g1(x) + g2(x),

where

g1(x) =
∞∑
k=0

2−kN

(2kρ(x))d

∫
B(x,2kρ(x))

|f(y)| dy,

and

g2(x) =
∞∑
k=0

2−kN

(2kρ(x))d−1

∫
B(x,2kρ(x))

(∫
B(x,2kρ(x))

V (u)
|u− y|d−1

du

)
|f(y)| dy.

Notice that g1 is the same as (20) for M = N + d. Then its boundedness, for N
large enough, follows from the arguments given there.

Regarding g2, according to Lemma 3, we only have to consider d
2 < q < d.
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CLASSES OF WEIGHTS RELATED TO SCHRÖDINGER OPERATORS 11

We consider a covering by critical balls as in the proof of Theorem 2. With the
notation there, for x ∈ Qj we have B(x, 2kρ(x)) ⊂ Q̃kj , and so∫

B(x,2kρ(x))

V (u)
|u− y|d−1

du . I1(χQ̃kj V )(y),

where I1 is the classical Fractional Integral of order 1. Therefore,

‖g2‖Lp(w) .
∞∑
k=0

2−kN

∑
j

w(Qj)
(2kρ(xj))p(d−1)

(∫
Q̃kj

I1(χQ̃kj V )f

)p1/p

.

If we choose γ such that 1
γ + 1

s + 1
p = 1, then by Hölder’s inequality,

∫
Q̃kj

I1(χQ̃kj V )f ≤ ‖I1(χQ̃kj V )‖s‖χQ̃kj f‖Lp(w)

(∫
Q̃kj

w−γ/p

)1/γ

.

Recall that V ∈ RHq for some q > 1 implies that V satisfies the doubling
condition, i.e., there exist constants µ ≥ 1 and C such that∫

tB

V ≤ C tdµ
∫
B

V,

holds for every ball B and t > 1. Therefore, due to the boundedness of I1 from Lq

into Ls, and the assumptions on V ,

‖I1(χQ̃kj V )‖s . ‖χQ̃kj V ‖q . |Q̃
k
j |−1/q′

∫
Q̃kj

V

. 2kdµ|Q̃kj |−1/q′
∫
Q̃j

V . 2kd(µ− 1
q′ )ρ(xj)

d
q−2

where the last inequality follows from the definition of ρ (see (8)). Hence,

‖g2‖Lp(w) .

∞∑
k=0

2−k(N−dµ+d/q′)

∑
j

w(Qj)

ρ(xj)
p( d
q′+1)

(∫
Q̃kj

w−γ/p

)p/γ ∫
Q̃kj

|f |pw

1/p

.

Since w ∈ Aρ,θp/s′ , for some θ > 0, and p
γ = p

s′ − 1 the last expression is bounded by

∞∑
k=0

2−k(N−dµ−1− θ
s′ )

∑
j

∫
Q̃kj

|f |pw

1/p

. ‖f‖Lp(w)

∞∑
k=0

2−k(N−dµ−1− θ
s′−N1),

where the last inequality is due to Proposition 2. Finally, the series converges if we
choose N large enough.

Now we have to deal with the term (R∗loc − R∗loc)f of (24). By using estimate
(22), we have

|(R∗loc −R∗loc)f(x)| . h1(x) + h2(x)

where

h1(x) = ρ(x)−2+d/q

∫
B(x,ρ(x))

|f(z)|
|x− z|d−2+d/q

dz
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12 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

and

h2(x) =
∫
B(x,ρ(x))

|f(z)|
|x− z|d−1

(∫
B(z,|x−z|/4)

V (u)
|u− z|d−1

du

)
dz.

For h1 we have

h1(x) ≤ ρ(x)−2+d/q
∞∑
k=1

(2−kρ(x))−d+2−d/q
∫
B(x,2−kρ(x))

|f |

. Mlocf(x).

Hence, as a consequence of Theorem 1, we obtain all the needed results for h1.
To deal with h2, according to Lemma 3, we only have to consider d

2 < q < d.
Let us take a covering {Qj} as before. For each j and k there exist 2dk balls

of radio 2−kρ(xj), B
j,k
l = B(xj,kl , 2−kρ(xj)) such that Qj ⊂ ∪2dk

l=1B
j,k
l ⊂ 2Qj and∑2dk

l=1 χBj,kl
≤ 2d. Moreover, this construction can be done in a way that for each k

the family of a fixed dilation {B̃j,kl }j,l is a covering of Rd with

(25)
∑
j

2dk∑
l=1

χB̃j,kl
≤ C

with the constant C independent of k. To our purpose we take the dilation B̃j,kl =
5c0B

j,k
l .

Splitting into annuli,

h2(x) .
∞∑
k=0

2k(d−1)h2,k(x),

where

h2,k(x) = ρ(x)−d+1

∫
B(x,2−kρ(x))

|f(z)|

(∫
B(z,|x−z|/4)

V (u)
|u− z|d−1

du

)
dz.

Observe that if x ∈ Bj,kl ,

h2,k(x) . ρ(xj)−d+1

∫
B̃j,kl

|f | I1(χB̃j,kl V ),

but ∫
B̃j,kl

|f | I1(χB̃j,kl V ) ≤ ‖I1(χB̃j,kl V )‖s‖χB̃j,kl f‖Lp(w)

(∫
B̃j,kl

w−γ/p

)1/γ

.

Using that I1 is bounded from Lq into Ls, and Lemma 4,

‖I1(χB̃j,kl V )‖s . ‖χB̃j,kl V ‖q

. |B̃j,kl |
−1+1/q

∫
B̃j,kl

V

. ρ(xj)−2+d/q.

(26)
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CLASSES OF WEIGHTS RELATED TO SCHRÖDINGER OPERATORS 13

Therefore, from the above estimate, using that w ∈ Aρ,∞p/s′ and p
γ = p

s′ − 1,

‖h2,k‖Lp(w) .
∑
j,l

w(Bj,kl )
ρ(xj)p(1+d/q′)

(∫
B̃j,kl

w−γ/p

)p/γ
‖χBj,kl f‖pLp(w)

. 2−k(1+ d
q′ )

∑
j,l

‖χBj,kl f‖pLp(w)

1/p

. 2−k(1+ d
q′ )‖f‖Lp(w),

where in the last inequality we have used the finite overlapping property (25).
Now,

‖h2‖Lp(w) .
∞∑
k=0

2k(d−1)‖h2,k‖Lp(w) . ‖f‖Lp(w),

and the summability of the series is due to d
q − 2 < 0.

In this way we have proved all the stated boundedness for R∗. By duality we
obtain the results for R, except the weak type (1, 1) for both i) and ii).

To take care of that we decompose R in a slightly different way.
We write

(27) Rf = Rloc∗f + Rglob∗f + (Rloc∗ −Rloc∗)f,

where given an operator S, Sloc∗f(x) = S(fχEρx)(x), with Eρx = {y : |x−y| < ρ(y)},
and Sglob∗ = S − Sloc∗ .

With this notation we have

(28) (Rglob∗)∗ = R∗glob,

and

(29) (Rloc∗ −Rloc∗)∗ = R∗loc −R∗loc.

We claim that the first term of (27), Rloc∗ , is of weak type (1, 1) for w ∈ Aρ,loc
1 .

This can be proved as for Rloc in Theorem 1. A careful look reveals that the clue
fact is that B(x, ρ(x)) ⊂ Q̃j for x ∈ Qj . So the proof of the weak type (1, 1) for
Rloc∗ follows as before changing Q̃j by 8c20Qj , since in our situation it is easy to
prove that Eρx ⊂ 8c20Qj for x ∈ Qj .

For the other two terms we proceed by duality. In view of (28) and (29) it is
enough to show that R∗glob and R∗loc − R∗loc are bounded on L∞w−1 = {f : fw−1 ∈
L∞} for w such that w ∈ Aρ,∞1 under the assumption q > d, or ws

′ ∈ Aρ,∞1 for
d
2 < q < d, 1

s = 1
q −

1
d . We shall do that using the same estimates already obtained

in the case p <∞.
First, let us check that ‖g1w

−1‖∞ and ‖g2w
−1‖∞ are bounded by ‖fw−1‖∞. In

fact, since as before, for x ∈ Qj , B(x, 2kρ(x)) ⊂ Q̃kj and ρ(x) ≈ ρ(xj), we get for
w ∈ Aρ,∞1 ,

‖g1w
−1‖∞ .

∞∑
k=0

2−k(N+d) sup
j

ρ(xj)−d(sup
Q̃kj

w−1)
∫
Q̃kj

|f |


. ‖fw−1‖∞

∞∑
k=0

2−k(N−θ),
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14 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

and the last sum converges taking N large enough.
As for g2 we only have to consider the case d

2 < q < d. Using the same estimates
as before

‖g2w
−1‖∞ .

∞∑
k=0

2−kN
(

sup
j

supQ̃kj w
−1

(2kρ(xj))(d−1)

(∫
Q̃kj

I1(χQ̃kj V )f

))
,

but for each k and j,∫
Q̃kj

I1(χQ̃kj V )f ≤ ‖fw−1‖∞‖I1(χQ̃kj V )‖s

(∫
Q̃kj

ws
′

)1/s′

.

Using (26) and that ws
′

belongs to Aρ,∞1 the conclusion follows taking N large
enough.

With similar techniques the boundedness of h1 and h2 on L∞w−1 can be achieved
and the proof is finished. �

Now, we present an important property of the classes of weights in Aρ,∞p that
will allow us to improve Theorem 3 part ii).

It is well known that a weight in Ap, also belongs to Ap−ε for some ε > 0.
Following the proof in [2], it becomes clear that the classes Aρ,loc

p share this property.
In the next proposition, we show that it also holds for the intermediate classes Aρ,∞p .

Proposition 5. If w ∈ Aρ,∞p , 1 < p < ∞, then there exists ε > 0 such that
w ∈ Aρ,∞p−ε .

As in the classical theory of weights, the previous proposition is a consequence
of the following property that resembles a reverse Hölder property.

Lemma 5. If w ∈ Aρ,∞p , 1 ≤ p < ∞, then there exist positive constants δ, η and
C such that (

1
|B|

∫
B

w1+δ

) 1
1+δ

≤ C
(

1
|B|

∫
B

w

)(
1 +

r

ρ(x)

)η
,

for every ball B = B(x, r).

Proof. Since w ∈ Aρ,∞p , also w ∈ Aρ,loc
p and thus there exist constants δ and C,

independent of B, such that

(30)
(

1
|B|

∫
B

w1+δ

) 1
1+δ

≤ Cw(B)
|B|

.

for every ball B = B(x, r) with r ≤ ρ(x). (This can be seen following the classical
proof for Ap in [2]).

On the other hand, let B = B(x, r), with r > ρ(x) and F = {j : Qj ∩ B 6= ∅},
where Qj = B(xj , ρ(xj)) and {xj}j is the sequence of Proposition 2.

For j ∈ F , using (10) and Qj ∩B 6= ∅ we have

ρ(xj) ≤ 2c20

(
1 +

r

ρ(x)

) N0
N0+1

r.

Therefore

(31) ∪j∈FQj ⊂ crB,
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CLASSES OF WEIGHTS RELATED TO SCHRÖDINGER OPERATORS 15

with cr = 4c20
(

1 + r
ρ(x)

) N0
N0+1

. Also from (10),

(32) ρ(xj) ≥
1
c0
ρ(x)

(
1 +

r

ρ(x)

)−N0

,

for every j ∈ F .
Now let δ be the constant in (30). By using Proposition 2,(∫

B

w1+δ

) 1
1+δ

≤
∑
j∈F

(∫
Qj

w1+δ

) 1
1+δ

.
∑
j∈F

w(Qj)|Qj |−
δ

1+δ

. w(crB)ρ(x)−
dδ

1+δ

(
1 +

r

ρ(x)

) dδN0
1+δ

,

(33)

where in the last inequality we have used (32), the finite overlapping property ii)
in Proposition 2 and then (31).

Finally, since w ∈ Aθp for some θ, we have

w(crB) . cdpr |B|p
(∫

crB

w−
1
p−1

)−p+1(
1 +

crr

ρ(x)

)θp
. w(B)

(
1 +

r

ρ(x)

)θp+ θpN0
N0+1 +

dpN0
N0+1

.

(34)

Combining (33) and (34) we obtain the desired inequality with

η = θp+ (θ + d)
pN0

N0 + 1
+ (N0 + 1)

dδ

1 + δ
.

�

Corollary 2. Let q0 = sup{q : w ∈ RHq} and s0 such that 1
s0

= 1
q0
− 1

d . If
w ∈ Aρ,∞p/s′0 , then the operator R∗ is bounded on Lp(w), for s′0 < p <∞. By duality,

if w−
1
p−1 ∈ Aρ,∞p′/s′0 , then R is bounded on Lp(w), for 1 < p < s0. Moreover, R is of

weak type (1, 1) for ws
′
0 ∈ Aρ,∞1 .

Proof. In terms of s0 the part ii) of Theorem 3 for R∗ can be re-written as: R∗ is
bounded on Lp(w), whenever s0 < p <∞ and w ∈ ∪s<s0A

ρ,∞
p/s′ . But, Proposition 5

implies Aρ,∞p/s′0
= ∪s<s0A

ρ,∞
p/s′ . Regarding the weak type of R we notice that if

ws
′
0 ∈ Aρ,∞1 then ws

′
0+ε ∈ Aρ,∞1 for some ε > 0 due to Proposition 5. Therefore we

are in the hypothesis of Theorem 3. �

5. The Fractional Integral

Let us remind that the L-Fractional Integral of order 0 < α < d can be written
as

Iαf(x) =
∫

Rd

∫ ∞
0

kt(x, y) tα/2
dt

t
f(y) dy.
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16 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

Theorem 4. For 1 < p < d/α, the operator Iα is bounded from Lp(w) into
Lν(wν/p) for wν/p ∈ Aρ,∞1+ ν

p′
, with 1

ν = 1
p −

α
d , and of weak type (1, d

d−α ) when

w
d

d−α ∈ Aρ,∞1 .

Proof. As before, for each x ∈ Rd we split Iα as

(35) Iαf = (Iα)locf + (Iα)globf.

where (Iα)locf(x) = IαfχB(x,ρ(x))(x) and (Iα)globf(x) = IαfχB(x,ρ(x))c(x).
It follows from (18) that the first term is bounded by (Iα)locf(x), for f non-

negative. Therefore, the conclusion for the first operator is a consequence of The-
orem 1, and Aρ,∞1+ ν

p′
⊂ Aρ,loc

1+ ν
p′

.

To deal with the second term of (35) we obtain a point-wise estimate by an
expression like (20). Indeed, using Lemma 2, for any M and N ,

|(Iα)globf(x)| ≤
∫ ∞

0

∫
B(x,ρ(x))c

kt(x, y)|f(y)| dy tα/2 dt
t

.
∫
B(x,ρ(x))c

|f(y)|
|x− y|M

dy

∫ ∞
0

(
1 +

√
t

ρ(x)

)−N
t(M−d+α)/2 dt

t
.

Now, choosing N ≥M > d− α,∫ ∞
0

(
1 +

√
t

ρ(x)

)−N
t(M−d+α)/2 dt

t

≤
∫ ρ(x)2

0

t(M−d+α)/2 dt

t
+ ρ(x)N

∫ ∞
ρ(x)2

t(−N+M−d+α)/2 dt

t

. ρ(x)M−d+α.

Therefore, splitting into annuli,

|(Iα)globf(x)| . ρ(x)−d+α
∞∑
k=1

2−kM
∫

2kBx

|f | dy.

Now we argue as we did with g1 in the proof of Theorem 2. Denoting Q̃kj = 2kQ̃j ,
since w ∈ Aρ,θ1+ ν

p′
for some θ > 0, we have for p > 1,

‖(Iα)globf‖Lν(wν/p)

.
∞∑
k=0

2−kM

∑
j

∫
Qj

ρ(x)ν(α−d)

(∫
2kBx

|f |
)ν

wν/p(x) dx

1/ν

.
∞∑
k=0

2−kM

∑
j

ρ(xj)ν(α−d)

(∫
Q̃kj

w−p
′/p

)ν/p′
wν/p(Qj)

(∫
Q̃kj

|f |pw

)ν/p1/ν

.
∞∑
k=0

2−k(M−d+α−θ)

∑
j

(∫
Q̃kj

|f |pw

)ν/p1/ν

.
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CLASSES OF WEIGHTS RELATED TO SCHRÖDINGER OPERATORS 17

Finally, since ν ≥ p and using Proposition 2, the last expression is bounded by
∞∑
k=0

2−k(M−d−θ+α+N1)‖f‖Lp(w).

Choosing M large enough we are done.
For p = 1, (Iα)glob is also strong type (1, d

d−α ) and it follows in the same way as
in the case p > 1 with the obvious changes.

�

6. The associated Square Function

Let us point out that in [3] the authors introduce a Square Function associated
to L, that after a change of variables can be written as (5).

For this operator we have the following result.

Theorem 5. For 1 < p <∞ the operator g is bounded on Lp(w), when w ∈ Aρ,∞p ,
and of weak type (1, 1) when w ∈ Aρ,∞1 .

Proof. As before, we define

gloc(f)(x) = g(fχB(x,ρ(x)))(x) and gglob(f)(x) = g(fχBc(x,ρ(x)))(x),

with Bx = B(x, ρ(x)), and thus

‖g(f)‖Lp(w) ≤ ‖gloc(f)‖Lp(w) + ‖gglob(f)‖Lp(w).

We start with gglob. Denoting by qt the kernel of d
dte
−tL, from (2.7) of [3], for

any positive integer N we have

(36) |qt(x, y)| ≤ CN
td/2+1

(
1 +

t

ρ(x)2
+

t

ρ(x)2

)−N
e−
|x−y|2
Ct .

Therefore, for any M > 0, and Bx = B(x, ρ(x)),∣∣∣∣∣
∫
|x−y|>ρ(x)

qt(x, y)f(y)dy

∣∣∣∣∣
. t−d/2−1

(
1 +

t

ρ(x)2

)−N ∫
|x−y|>ρ(x)

e−
|x−y|2
Ct |f(y)|dy

. t
M−d

2 −1

(
1 +

t

ρ(x)2

)−N ∫
|x−y|>ρ(x)

|f(y)|
|x− y|M

dy

.
t
M−d

2 −1

ρ(x)M

(
1 +

t

ρ(x)2

)−N ∞∑
k=0

2−kM
∫

2kBx

|f |

.
t
M−d

2 −1

ρ(x)M−d

(
1 +

t

ρ(x)2

)−N
g1(x),

where g1 is defined in (20).
Hence,

gglob(f)(x) . g1(x)

(∫ ∞
0

(
t

ρ(x)2

)M−d(
1 +

t

ρ(x)2

)−2N
dt

t

)1/2

. g1(x),
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choosing M and N such that M − d > 0 and 2N > M − d. Hence, the estimates
for gglob follows from those for g1.

To deal with gloc we write

gloc(f)(x) . I(x) + gloc(x) + II(x),(37)

where gloc is the localization of the classical square function as in Theorem 1,

I(x) =

∫ ρ(x)2

0

∣∣∣∣∣
∫
|x−y|<ρ(x)

[qt(x, y)− q̃t(x, y)]f(y)dy

∣∣∣∣∣
2

t dt

1/2

,

where q̃t is the kernel of d
dte

t∆, and

II(x) =

∫ ∞
ρ(x)2

∣∣∣∣∣
∫
|x−y|<ρ(x)

qt(x, y)f(y)dy

∣∣∣∣∣
2

t dt

1/2

.

By (36) with N = 1/2,

II(x) .

∫ ∞
ρ(x)2

(
ρ(x)
t

)2
(∫
|x−y|<ρ(x)

e−
|x−y|2
Ct

td/2
|f(y)|dy

)2

dt

1/2

. T ∗loc(f)(x)

(∫ ∞
ρ(x)2

(
ρ(x)
t

)2

dt

)1/2

. T ∗loc(f)(x).

As we have already seen the last operator is bounded in Lp(w) for w ∈ Aρ,loc
p .

For I(x), as in [3] (equation 5.25) we use the following consequence of the per-
turbation formula

d

dt
e−tL − d

dt
et∆ =

e
t
2 ∆V e−

t
2L +

∫ t/2

0

d

dt
e(t−s)∆V e−sL ds +

∫ t

t/2

e(t−s)∆V
d

ds
e−sL ds.

Let us callK1, K2, K3, the kernels of the first, second and third term respectively.
Our arguments will be based on the inequality

(38) e−a|α|
2
e−b|β|

2
≤ e−

b
2 |β|

2
e−

c
2 |α+β|2 , α, β ∈ Rd, c = min

{
a,
b

2

}
,

and the estimate

(39)
∫

Rd
φt(x− z)V (z) dz .

1
t

( √
t

ρ(x)

)δ
,

for some δ > 0 and t < ρ(x)2, where φt(z) = 1
td/2

φ
(
z√
t

)
, with φ any rapidly

decreasing function, (see (2.8) in [3]).
For K1, by using (18), (38) (with a = b = 1

2t , α = x− z and β = z−y) and (39),
we get
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K1(x, y, t) .
1
td

∫
Rd
e−
|x−z|2

2t V (z) e−
|z−y|2

2t dz

.
1
td
e−
|x−y|2

8t

∫
Rd
V (z) e−

|z−y|2
4t dz

.
1

t
d
2 +1

( √
t

ρ(x)

)δ
e−
|x−y|2

8t .

For K2 we use first (17), (18), together with t/2 < t − s < t for 0 < s < t/2;
then we apply inequality (38) with a = 1

5t , b = 1
4s , α = x− z and β = z − y, to get

|K2(x, y, t)| . 1

t
d
2 +1

∫ t/2

0

1
sd/2

∫
Rd
e−
|x−z|2

5t V (z) e−
|y−z|2

4s dz ds

.
1

t
d
2 +1

e−
|x−y|2

10t

∫ t/2

0

1
sd/2

∫
Rd
V (z) e−

|y−z|2
8s dz ds

.
1

t
d
2 +1

( √
t

ρ(y)

)δ
e−
|x−y|2

10t ,

(40)

where in the last inequality we have used (39). Noting that for |x − y| ≤ ρ(x) we
have ρ(x) ≈ ρ(y), we obtain a similar estimate as for K1.

Finally, we proceed in a similar way for K3. By (36) and performing a change
of variables, we get

|K3(x, y, t)| .
∫ t/2

0

1
sd/2(t− s)d/2+1

∫
Rd
e−
|x−z|2

2s V (z) e−
|y−z|2
C(t−s) dz ds.

Since t/2 < t− s < t for 0 < s < t/2, we arrive to an expression similar to the first
line of (40) exchanging the roles of x and y, and with a different constant in the
exponential, and then we proceed as there.

From the above estimates, we have

|Ki(x, y, t)| .
1

t
d
2 +1

( √
t

ρ(x)

)δ
e−ε

|x−y|2
t ,

for i = 1, 2, 3, and some ε > 0.
Therefore,∫ ρ(x)2

0

∣∣∣∣∣
∫
|x−y|<ρ(x)

|Ki(x, y, t)||f(y)|dy

∣∣∣∣∣
2

t dt

1/2

.

∫ ρ(x)2

0

( √
t

ρ(x)

)δ ∣∣∣∣∣
∫
|x−y|<ρ(x)

e−ε
|x−y|2

t

td/2
f(y)dy

∣∣∣∣∣
2

dt

t

1/2

. T ∗locf(x).

(41)

for i = 1, 2, 3, and thus
I(x) . T ∗locf(x).

Coming back to (37), from the previous estimates

gloc(x) . T ∗locf(x) + gloc(x),

then the desired estimates follow from Theorem 1 since Aρ,∞p ⊂ Aρ,loc
p .
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