Continuous and localized Riesz bases for L^2 spaces defined by Muckenhoupt weights

Hugo Aimar * Wilfredo A. Ramos †

Abstract

Let w be an A_{∞} -Muckenhoupt weight in \mathbb{R} . Let $L^2(wdx)$ denote the space of square integrable real functions with the measure w(x)dx and the weighted scalar product $\langle f,g\rangle_w = \int_{\mathbb{R}} fg\ wdx$. By regularization of an unbalanced Haar system in $L^2(wdx)$ we construct absolutely continuous Riesz bases with supports as close to the dyadic intervals as desired. Also the Riesz bounds can be chosen as close to 1 as desired. The main tool used in the proof is Cotlar's Lemma.

Keyword: Riesz bases, Haar wavelets, basis perturbations, Muckenhoupt weights, Cotlar's Lemma.

MSC[2010] 42B20, 42C15, 42B25.