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NONLOCAL SCHRODINGER EQUATIONS IN METRIC
MEASURE SPACES

MARCELO ACTIS, HUGO AIMAR, BRUNO BONGIOANNI, AND IVANA GOMEZ

ABSTRACT. In this note we consider the pointwise convergence to the initial
data for the solutions of some nonlocal dyadic Schrédinger equations on spaces
of homogeneous type. We prove the a.e. convergence when the initial data
belongs to a dyadic version of an L? based Besov space. In particular we give
a Haar wavelet characterization of these dyadic Besov spaces.

1. INTRODUCTION

In quantum mechanics the position of a free particle in the space is described
by the probability density function |¢|*> = % with ¢ a solution of the Schrédinger
equation. In the classical model, the space is the euclidean and the Schradinger
equation is the associated to the Laplace operator, i.e. i‘%‘f = Ap. Hence the
probability of finding the particle inside the Borel set E of the euclidean space at
time ¢ is given by [, |¢(z,t)[* da.

The pointwise convergence to the initial data for the classical Schrodinger equa-
tion in euclidean settings is a hard problem. It is well known that some regularity
in the initial data is needed [6, 9, 11, 8, 14, 17, 15].

Nonlocal operators instead of the Laplacian in this basic model have been con-
sidered previously in the euclidean space (see for example [12] and references in
[16]). The nonlocal fractional derivatives as substitutes of the Laplacian become
natural objects when the space itself lacks any differentiable structure and only an
analysis of order less than one can be carried out.

To introduce our problem we shall start by a simple but representative situa-
tion. Set S to denote the Sierpinski triangle in R? equipped with the normalized
Hausdorff measure u = H, of order s = }ggg We shall consider that the particle is
confined to stay in S and that the probability of finding it inside the Borel subset
E of S is given by [, ol dp.

For each positive integer j, the set S can be written as the union of 3/ translations
of the contraction of S by a factor 377, with respect to any one of the three vertices
of the convex hull of S. Except for sets of u measure zero this covering of S is
disjoint. Each one of these pieces is denoted by T}, k = 1,... ,37. We shall also
write T} to denote S. Set D’ to denote the family {T,g ck =1,...,3} and

9 = U509’ . Notice that u(T]) = 377.
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For each j and each k = 1,...,3’ we have that T,g contains and is covered by
exactly three pieces Tglﬂ, Tg;l, T,g:l of the generation j+1. In order to abbreviate
the notation, given T' € & we write T'(1), T'(2) and T'(3) to denote these pieces of
T. The three dimensional space of all functions defined in 7" which are constant
on T(1), T(2) and T(3) has as a basis {XT, Xy, XT(Q)}. By orthonormalization
of this basis with the inner product of L?(du) keeping 392Xy, T € 97, as the
first element in the new basis, we get two other functions h}. and h2 such that
{37 12Xp, hi., h2} is an orthonormal basis for that three dimensional space. Notice
that the orthogonality of h¥. with Xy implies that [ hidp = 0,4 = 1,2. To fix ideas,
from the self similarity of our setting, we can take h}. and h2 as the corresponding
scalings and translations of those associated to T = Ty. For example, if

Bho(2) = /3 (Xra) - X))
ho(2) = J5 (Xrqy + Xr) — 2X1@3)) »
then

1 _ z 3 ) ]
iy (@) = 324/3 (X0 = Ay

and ‘
j
Wy (@) =82 J5 Xy + Xy — 2y -

The system 7 of all these functions h is an orthonormal basis for the subspace
of L*(T,du) of those functions with vanishing mean. Or, equivalently, the system
2 U {1} is an orthonormal basis for L(T, dpu).

For a given h in J# we say that h is based on T € 2 if h = h. fori=1ori = 2.
We shall use T'(h) to denote the triangle in which h is based. For each T € Z there

are exactly two wavelets h € 2 based on T
A space time function w : S x R — C of the type

M

w(x,t) = Z Z Cm.ne"h(x)

m=—M heF

with .# a finite part of J#, can be seen as a wave on the Sierpinski triangle. For
fixed x € S we have a classical trigonometric wave in the time variable. For fixed
time we have a linear combination of wavelets in the Sierpinski triangle S. In
our model, the dynamics of the wave function representing the state of a quantum
system in the Sierpinski triangle S, is governed by a nonlocal differential operator
which we proceed to introduce. _

Since the diameters of the pieces T} tend to zero when j — oo, given two different
points & and y in S then, sooner or later, there must be two different pieces T,
containing  and T, containing y. Hence the number §(z,y) = min{u(T) : T €
2 such that z,y € T} is positive and bounded above by 1. The function ¢ is a
distance on S provided we agree at defining é(z,x) = 0.

Notice that for a given z € S and 0 < r < 1 the §-ball centered at x with
radius r, Bs(z,7) = {y € S : §(z,y) < r} is the largest T' € Z containing x for
which p(T) < r. Hence, for 0 < r < 1 we have that g < pu(Bs(x,7)) < r. Let us also
observe that §(z,y) > |z — y|°, with s = ﬁgg Of course the converse inequality is
not true for general points « and y in S.
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Take now a real function f in L?(S, du) and denote with (f, k) the inner product
in L2(S,du) of f and h € . In the sense of L?(S,du) we have

F=>Y (fimh,
hest
whenever [¢ fdu = 0.
Set j(h) to denote the integer j such that T'(h) € 27. From the results in [1]
applied to our particular setting S and 0 < § < 1, we have that each h € 7 is an
eigenfunction with eigenvalue u(T(h))~? = 3/(M# of the operator

(z) = 9(y)
gﬁDﬁg(x)—/SWdu(y)

defined at least for g of Lipschitz class with respect to d, as certainly is the case of
the Haar functions. In other words Dfg =", _ 395 (g h) h.
The function

u(z,t) = Y e (f By h(x),

hest
defined for z € S and t > 0 is well defined as an L?(S, du) function for each ¢t > 0.
Observe that, at least formally, u(z,0) = f(z) and

0= 3 OO ) )
hes#

_ Z —it3i(h)B B _ B

= e (f,hy D°h(x) = D" u(x,t)
hes#

In other words, the wave u solves the Schrédinger type problem

Ou
i = Dl (1.1)
u(z,0) = f(x).

In this papaer we turn our attention to more general spaces than .S, the spaces
of homogeneous type, where the Haar Fourier analysis and dyadic fractional deriva-
tives can be defined (see [1]).

The paper is organized in four sections. The second one deals with the general
case associated to dyadic partitions of a space of homogeneous type, and we state
the main results, which are contained in Theorems 3 and 4. The third section is
devoted to introduce a characterization in terms of Haar coefficients of some classes
of dyadic Besov spaces. In the last section we solve (1.1) in the abstract setting
and we prove the pointwise convergence results to initial data of Besov type.

2. THE GENERAL SETTING

We shall be brief in our introduction of the basic setting. For a more detailed
approach see [1]. Let (X, d, u) be a space of homogeneous type (see [13]). Let
be a dyadic family in X as constructed by M. Christ in [7]. Let S be a Haar
system for L?(X, 1) associated to Z as built in [2] (see also [5], [3]). Following the
basic notation introduced in Section 1, we shall use .77 itself s the index set for
the analysis and synthesis of signals defined on X. Precisely, by Q(h) we denote
the member of 2 on which h is based. With j(h) we denote the integer scale j for
which Q(h) € 7.
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The system 7 is an orthonormal basis for L3, where L3 coincides with L?(X.u)
if f(X) =+o0 and L§ = {f € L*: [ fdu =0} if u(X) < co. For a given Q € Z
the number of wavelets h based on @ is #9(Q) — 1, where ¥(Q) is the offspring of
Q@ and #9(Q) is its cardinal. The homogeneity property of the space together with
the metric control of the dyadic sets guarantee a uniform upper bound for #9(Q).
On the other hand #9(Q) > 1 for every Q) € 9.

Let (X, d, u, 2, 7) be given as before. For the sake of simplicity we shall assume
along this paper that X itself is a quadrant for . We say that X itself is a
quadrant if given two cubes Q and Q' we have either that @ is contained in Q’
or that Q' is contained in Q. A distance in X associated to & can be defined by
d(z,y) = min{p(Q) : Q € 2 such that x,y € Q} when z # y and d(z,z) = 0. The
next lemma, borrowed to [1], reflects the one dimensional character of X equipped
with § and p.

Lemma 1 (Lemma 3.1 in [1]). Let 0 < e < 1, and let Q be a given dyadic cube in
X. Then, for x € Q, we have

du(y) V.
/X\Q 5z, y) e ~ u(@Q)F.

Furthermore the integral of §~!(x,-) diverges on each dyadic cube containing x
and, when the measure of X is not finite, on the complement of each dyadic cube.
For a complex value function f Lipschitz continuous with respect to § define

[z
D’ f(x) / e 1+B dp(y),

One of the key results relating the operator D? with the Haar system is provided
by the following spectral theorem contained in [1].

Theorem 2 (Theorem 3.1 in [1]). Let 0 < 8 < 1. For each h € S we have
DPn(z) = mppu(Q(h)) h(z), (2.1)

where my, is a constant that may depends of Q(h) but there exist two finite and
positive constants My and Ms such that

My <mp < Ms,  forall h € 7. (2.2)
Set B3 (X, 4, ;1) to denote the space of those functions f € L?(X, u) satisfying

- fly)
// “ X 51+2,\ (z,7) oy dn(@)du(y) < oo

The projection operator defined on L? onto V the subspace of functions which are
constant on each cube Q € 2° is denoted by Py.We are now in position to state
the main results of this paper.

Theorem 3. Let 0 < 3 < A < 1 and ug € B3(X, 0, 1) with Poug = 0 be given.
Then, the function u defined on RT by

u(ty = — Y emimnn@U)" (g p) h, (2.3)
hes#

(3.a) belongs to B3(X, 8, ) for every t > 0;
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(3.b) solves the problem

du
DBy >0,
“dt

u(0)=uyo  on X.

(2.4)

Precisely, —“ is the Fréchet derivative of u(t) as a function of t € (0,00) with
values in B (X, 6, 1) and limy_o+ u(t) = ug in B}(X, 6, p).
Theorem 4. Let 0 < 8 < A < 1 and ug € B3(X, 3, u) with Pyug = 0 be given.
Then,

(4.a) there exists Z C X with u(Z) = 0 such that the series (2.3) defining u(t)
converges pointwise for every t € [0,1) outside Z;
(4.b) u(t) = ug pointwise almost everywhere on X with respect to u when t — 0.

3. CHARACTERIZATION OF THE BESOV SPACE BJ(X,J, 1) IN TERMS OF HAAR
COEFFICIENTS

The aim of this section is to characterize B (X,d, ) in terms of the sequence
{fyhy :he A} for0<o<1.

Theorem 5. let 0 < o < 1 be given. The space B (X, 0, ) coincides with the
subspace of L*(X, ) of those functions f for which

[(F, B2
2 aQmyE <%
Moreover,

2
17155 x amy = IF ey + D <<§§%

hest

Let us state some important lemmas that will be useful in for the proof of the
above theorem.

Lemma 6. Let 0 < o <1 and h,i~z € I be given. Then
o [h(z) — h(y)][h(z) — h(y)]
vndyi= [ 2 ) du(z) =
if h # h, and

v = [ B dudnte) = u@im) >

where the equivalence constants depend only on the geometric constants of the space.

Proof. For the first part of the proof, i.e. v(h, E) =0, when h # E we shall divide
our analy51s in three cases accordlng to the relative positions of Q(h) := @ and

QR ==Q. () Q=@ (i) QNQ =D and (i) QS Q.
Let us start by (i). Set II,7(z,y) := [h(z) — h(y)|[h(z) — h(y)]. Notice that for z
and y in X \ Q we have Hhﬁ(z,y) = 0. On the other hand, for z € Q and y € X\ Q

we have IT, 7 (z,y) = h(m)ﬁ(m) Hence

//xXx d(z,y) ”Qad we)du(y) _//QX(X\Q) 5(x,y)1+2adﬂ( )dp(y)
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h(y)h(y)
+ // X\Q)XQ 75(1, e dp(x)dpu(y)
IL,7 (2, y)
//Q T S du(a)duty)
1L, 5 (2, y)
//Q T Sty

since for the first term d(x, y) is constant as a function of z € @ for y fixed in X'\ @,

for the second §(z,y) is constant as a function of y € @ for z fixed in X \ Q and h
and h are orthogonal. Let us prove that foXQ %du(m)du(y) = 0. Since h
and h are constant on Q" € 9(Q) we have that II,7(z,y) = 0 for (z,y) € Q" x Q’,
hence

//QxQ(S xh,h 1+2od p(z)dp(y)
- X2 // ;hyxlfza pu(2)dp(y)

Q'e¥(Q) Q"ed(Q)

> [ [ e i Y) g eydu(y)

’ Q/5$y1+20

Q'eV(Q)
acy
SO O AT
Q'EV(Q) Q" e€¥(Q)
Q'#Q"
ey / ( | Tt ))du(y)
QeV(Q Q'eV(Q)

~1-20 / / h(y)h(z)

~ h)h(y) + hh(du()dny)  (3.1)
=0.
Let us now consider the case (i), that is Q N Q = (. In this case 0,5 (z, ) is
(z

supported in (@ x Q)U(Q x @) Moreover on Q x @ we have 5 (z,y) = (y)
and on Q x Q, 0,5 (z,y) = —h(x )h(y). Since, on the other hand §(z,y) = 6(Q
which is a positive constant on the support of IT, -, we get

//XXX 6(x 1+2a du(z)dp(y)
- _W {//@xQ[h(y)E(x”d“(x)du(y) + //Q X@[h(:c)ﬁ(y)]du(m)du(y)}

hh?

Consider now the case (iii). Since Q & @, then h is constant on @, hence

1 (@5 Y)
s du(@)du(y) :// +// +// :
//Xxx O(z,y)t+2 X\QxQ@  Moxq Haoxx\Q)
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Since h is constant on Q, 11,7 is identically zero on @ x @ and the second term
vanishes. For the first term notice that it can be written as

(—h(y) (h(x) — h(yq))
/X\Q (/Q 5(Q, z)1+20 du(y)> dp(x)

-/ . W@(@ ( /Q Piu))
-0,

here yg denotes any fixed point in Q). For the third term we have similarly

hh (z,y)
du(x)d
//Q o T )

_ (h(x))(h(zq) — h(y))
= /X\Q (/ 5(@ y)mJ du(%)) dp(y)
=0.

Finally we have to show that v(h, h) ~ u(Q(h))~2°. Let Q = Q(h). Notice first
for (z,y) € (X \ Q) x (X \ Q) we have IIj;(x,y) = 0. Hence

pn(z,y)
/xXx(? Hzgd p(x)dp(y)

Hhh(337y) // Hhh z,y)
N §(z, y)t+2e ——-du(x)d
//(X\Q)XQ 5(93,11)”2” ox0 0(T,y)1+27 pu(z)du(y)
My (2, y)
4 // 120 AH(w)dp(y
Qx(x\@) 0(2,y)1 "% (@)dpy)
pp (2, ) ) // Hhh 2,9)
=7 3w, g)12r AU 8 Y) g (2)d
/X\Q( @ O(z,y)t*2o ox@ 0(z, )12 () dp(y)
=2I +1I.

Let us first get an estimate for I. Notice that for any =,z € @ and y € X \ @,
we have that §(z,y) = §(z,y), hence I = fX\Q 5(z,y)~ (HQU)du ) Jo Ih(z )P du(x),
which is equivalent to u(Q)~2° by Lemma 1. To get the desired bound for 1, we
observe that equation (3.1) holds for & = h also, then

pn(z,y)
//QXQ 5.1) mad (@) dp(y)

)-1-20 //Q @)+ 1) = 2 (@) dia@)d(y)

=2u(Q)?
O

For Q € 9, set A ={h € H : Q(h) C Q}. Let S(H%) denote the linear span
of H%. Since ., is countable we write ¢2 to denote the space ¢2(.7) of all square
summable complex sequences indexed on #¢5. On the other hand, consider the

weighted space £2(Q x Q) := L*(Q x Q, %). The next lemma shows that
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for ¢ and ¢ in S(H) the inner product of % ith W in £2(Q x Q)
(@,h)

is equivalent to the inner product of Ot with M(g’(h 77 in 02(3).

Lemma 7. Let 0 < 0 <1 and Q € 2 be given. For ¢, ¢ two functions in S(#,)
we have that

[o(z) — eW[(x) — ¥ (y)] 3
//QxQ §(x,y)+2e du(z)du(y) = Z (o, h) (3, hYy v(h, h).

he sty

In particular,

o) T
//QxQ g @) = 3 o

hety

Proof. Since ¢ and 1 are in the linear span of ¢ we easily see that

(@) - el = > Y e (eh) @) - i) - hy)]
hEJtheij

1420

Dividing both members of the above equation by d(z,y) , integrating on the

product space Q@ x @ and then applying Lemma 6 we get

eW)][Y(x) —¥(y)]
//QXQ (x,y)i+2 dp(z)du(y)
= >><E<x> R,
hezﬁ:fcz he%:fQ - 1/% //QXQ x,y)t2e p(@)dp(y)
= W)
B he #Q 90’ w h //QXQ (5 .’17 y 1+2<7 T irse O (-T)d,u(y)
= > (e h) (W, hyw(h, h).
hesty

O

Lemma 8. For ¢ € S(H) there exists € > 0 such that ¥(z) — ¥(y) vanishes on
Ac={(z,y) €e X x X : 6(z,y) < e}

Proof. Tt is enough to check the result for ¢ = h € J#. But since h is constant on
each child @ of Q(h) we have that h(z) — h(y) = 0 on Ug: ehitg or @ @ X @~ On
the other hand, h(x) — h(y) = 0 for = and y both outside Q(h). Hence h(z) — h(y)
vanishes on {(z,y) : §(z,y) < u(Q(h))}. O

The next result shows that Lemma 7 extends to the case of ¢ in L2
Lemma 9. Let Q be a cube in 2, f € L*(Q,pn) and 1 € S(H#,). Then
Plx) — Yy
J[ =L = O et = Y (k) ) vl )
QxQ o, y) net

Proof. Let 7, /* A and fy, = 3,5 (f,h)h. Since each f, € S(HG) we have
from Lemma 7 that

[fn(z n( () — ¥(y)] B )
//QxQ 3(z,y)1+20 dp(x)dp(y) = Y (f,h) (¥, h) v(h,h)

he Ay
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taking n large enough such that .%, contains all the A’s building . On the other
hand, since, from Lemma 8, the function % € L>*(Q x Q) and fp(z) —
fuly) = f(z) — fly) in L2(Q x Q), hence in L*(Q x Q) we get the desired equality.

O

The next result allow us to localize to dyadic cubes our characterization of the
Besov space BS (X, 0, 1) in terms of the Haar coefficients.

Lemma 10. The set

Ay ={(z,y) eX xX:6xy) <1}= ] @xQ,
Qe
where A is the family of all mazimal dyadic cubes in P with u(Q) < 1.
The next result is a statement of the intuitive fact that the regularity requirement

additional to the L? integrability involved in the definition of BS(X,d, 1) is only
relevant around the diagonal of X x X.

Lemma 11. For 0 < o <1 an L? function f belongs to BS(X, 4, 1) if and only if

_ @) 1w, -
! _//‘*<mvy><1 6(w,y)t+2e dp(x)dp(y) < oo.

1
Moreover, the B (X, 6, ) norm of f is equivalent to || f||, + [£(f)]2.

Proof. The “only if” is obvious. Since

//5(1‘73;)21 Oz, y)t*2e ) = C/xex " </5(w,y)21 5(x,y)1+2a> dp(z).

From Lemma 1 we have that the first term in the above inequality is bounded by
the L? norm of f, as desired. O

The following result is elementary but useful.

Lemma 12. For an L*(X,p) function f the quantities Hf||2 + D hesw #‘(g(zgl;g

and ||f|| + > hew |<7h>\a are equivalent.
2t 2 beX | WQU)?

The characterization of B (X,d, ) in terms of the Haar system is just a com-
pletation argument built on the result in Lemma 6.

Proof of Theorem 5. From Lemmas 8, 9 and 10 it is enough to prove that that

quantities
2
y
I i) (32
X

2
2 u(g’(zig% (33)
heHy
are equivalent for each cube @ in .# with constants independent of Q).

Let us start by showing that the double integral in (3.2) is bounded by the
sum (3.3). Let (%,) be an increasing sequence of finite subfamilies of .77 that cov-
ers /3. In other words .%,, C F, 1 and 5 = |J,, #n. Let fr, = Zheff” (fxq,h)h.
Since f, converge pointwise almost everywhere for x in @ to f(z), then we have

and
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that | f(x) — fu(y)| = |f(z) — f(y)| as n — oo for y € @ also. Hence from Fatou’s
lemma and Lemma 7

//QXQ 3(z,y) 1+23‘ //QfoHoo Wfi (x)dp(y)

< C'liminf Z fn’ >|2
P2, wQ

<C ). LomF

hety

To prove the converse we shall argue by duality. Take b = {by: h € Ay} a
sequence of scalars indexed on ¢ with b, = 0 except for a finite number of h € J735.

Assume that 3, .. bp|”> < 1. Set ¢ = 2 hes, buv(h, h)~Y2h € S(#3). So that
from Lemma 9,

N[ —=

D (fhyvh )2 =3 (f.h) (bR v, )
ey WS
//QxQ g,))y()lizc)r L) dp(x)du(y)

<//Q><Q §(z,y) 1+23|2d ) (// ) 5 o 1+22|2 (I)du(y)>2_

Notice that from Lemma 7 and Lemma 6 we have,

//QXQ o(z,y) 1+20)| du(z)du(y) < C Z AR RrA B

Hence

<c ( IS e L, (:c)du(y)>2,

Z<f, B v(h, h) b,

so that

N

1

(Z); \(f,h>|21/( ) (//Q o 5 (2,9) 1+22—| d (J:)du(y))
he sty X
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or
1
2 2 2
A f(y)]
2 LQmy Syt ()
he sty xQ
as desired.
O

4. PROOF OF THEOREMS 3 AND 4

Before start proving the main results, let us mention that from the result of
the previous section the Sobolev type condition required in [1, Theorem 4.1] is the
same as our current hypothesis f € B3 (X, d, ) when p = 2. Then for any function
f € B§(X,0, ) we can write

Daf Z mh,u <f7 > ( )7
hest

where the series converges in L?(X, ).

Proof of Theorem 3. From Theorem 5 we see that for each t > 0, u(t) defined
in (2.3) belongs to B (X, 4, u), since ug € B3 (X, d, ). Moreover, for t,s > 0,

2

Z (eitth(Q(h))75 — e"sm““(Q(h))iﬁ) (uo, h) h
hes#

> ‘eitmhm(h))—‘* O
heA

2
£ [eftman(@e _ gisman(@)” ’3’ [{uo, )|
2 H(Q()

In order to see that both series above tend to zero as s — ¢, for each positive € we can
take a finite subfamily .7 of J such that 3, ;.\ & [(vo, h)|? (1+pu(Q(h)~?) <e.
For the sums on .% we can argue with the continuity of the complex exponential.

Let us prove that the formal derivative of u(t) is actually the derivative in the
sense of Bé\_ﬁ(X, 0, ). In fact, for t > 0 and 7 small enough,

2
[u(®) = u(s)lpy (x50 =

B2 (X,6,)

|uo, h)*

W+ T) =) 5 o@D QU Gy B

hest

T

By (X .8.u)
2

3 eitmnn(Q(h) ="

[eirmhM(Q(h))_ -1 . Z,U(Q(h))ﬁ‘| <u07h> h

he# T By (X6,
2
. _s [efrman@m) = _ _
<C Z eitmni(Q(h)) [ = —iu(Q(h)) A (uo, h) h
he# L
iTm h))~# 2 2
L3 (@) _q iu(Q)? [{uo, )|

u(Q(h))20=5)

T

hest
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etrmnu(Q(h) ™7 _ 2 |(u h>|2
<0 w(Qn)* —ip(Q(h) ™| =2
% T w(@Q(n)?

Since, from Theorem 5, Y, . ,» Jég’(}%lﬂ < 00 and

2 girman(@m) 7 _q

w(Q(h))~Pr

tends to zero as 7 — 0 for each h € J#, arguing as before we obtain the result.
On the other hand since u(t) € B3(X,d, 1) and since A > 3, DPu(t) is well
defined and it is given by

DPu(t) = D? (Z eitmnu(Q(h)~? (ug, h) h>

hest

25 eirmnu(Q(h) ™7 _

1(Q(h)) —ip(Q(h) ™"

T

= 3 QO Q) o, Ay = i

dt
heA

Hence u(t) is a solution of the nonlocal equation and (:3.b) is proved.
O

Before proving Theorem 4 we shall obtain some basic maximal estimates involved
in the proofs of (/.a) and (4.b). With My, we denote the Hardy-Littlewood dyadic
maximal operator given by

Mutte) == | )t

where the supremum is taken on the famlly of all dyadic cubes @ € Z for which
x € . Calderén’s dyadic maximal operator of order \ is defined by

M1, ) = s ey [ 1000 — )] du),

where the supremum is taken on the famlly of all dyadic cubes @ of X such that
z € Q. The following lemma can be seen as an extension of a result by DeVore and
Sharpley in [10, Corollary 11.6].

Lemma 13. If f € By(X, 8, ), then HM;?E

=Wl

Proof. Let Q@ € 2 and x € @ be given. Applying Schwarz’s inequality, since
0(z,y) < u(Q) for y € Q, we have

dy

=

1“/ ) = @)l dply) < s (/ F) — F(@) 2 dpy >)2M<Q>5
( s [ 150 = 0 i) )

f) ~ f(@) ’
< ( ; Wdﬂ(y)> .

/\

N[ =

[



ISSN 2451-7100
IMAL PREPRINT # 2015-0028 Publication date: May 26, 2015

NONLOCAL SCHRODINGER EQUATIONS IN METRIC MEASURE SPACES 13

In this section we shall need a better description of the structure of 7 in terms
of scales. As we said before 27 denotes the dyadic sets at the scale j € Z. With
7 we denote the Haar wavelets which are based in the cubes of 27 for j a fixed
integer. Since from our construction of the Haar system we have that

Visn =V & Wy,

then J#7 is an orthonormal basis for W;. Hence, for N > 0, V41 = Vo & Wy &
...® Wy. So that, for Pyf = 0, the projection of f onto Vi1 is given by

N
Pyniif = Z Q;f,

j=0
where Q; is the projector onto W;, precisely
Qif= > (fih)h
hesti

As it is easy to see, since Viy;1 is the space of those L? functions on X which are
constant on each cube of 2V | Py f(z)] < Mgy f(z), pointwise.

Let us next introduce two maximal operators related to the series (2.3). For
fixed t > 0 set

S f(x) = sup [SY f(x)]
NeN
with

N
SNy =" 3 entmnnl@UDE (£ py p(z).
Jj=0 hes#i
Set

S*f(x) = sup S;f(x).

0<t<1

Lemma 14. Let f € By(X,6, 1) with 0 < B < A < 1 and Pyf = 0. Then, the
inequalities

(1}.a) Sff(x) < Cthfdyf(x) +2Mgy f(x) fort >0 and v € X;
(14.b) §*f(z) < OMF,, f(x) + 2May f(x) for z € X;
(]40) ||S*fHL2 < C ”f”B%(X,J,/L)’
hold for some constant C' which does not depend on f.
Proof. For f € By(X,8,1),t>0and N € N, we have
S f(@)] <SP f(x) = Sp' f ()] + |Sg" f ()] - (4.1)

Since S{' f(z) = Py f(x), we have supy | Sy f(z)| < May f(z). Let us now estimate
the first term on the right hand side of (4.1). Let Q(j,x) be the only cube @ in
97 for which x € Q. Let J(j,z) be the set of all the wavelets based on Q(j, ).
Recall that #((j,x)) is bounded by a purely geometric constant. Then

S () = S5 f(2)]

N
_ Z Z [efitmhu(Q(jyr))’ﬂ — 1| (f, h) h(x)

7=0 he.#(j,x)
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N
D [e-itmhu@(m))’ﬂ _1} /Q(. )(f(y)—f(ff))h(y)du(y) h(z)

§=0 he 2 (j,x)

’e—z‘tmmczu,x)rﬁ _ 1‘ )

0> Y @A R g 10~ (N0

=0 hes#(j

<CtZu P EME,, f(x)

< C’tM/\dyf(x)
and (14.a) is proved. Since t < 1, (14.0) follows. And applying Lemma 13 we get
(14.c). O
Proof of Theorem 4. Since for each Q) € Z we have that Xg belongs to Lip(X,0), in
fact |Xg(z) — Xo(y)| < 6;?5))’ then S(#) is a dense subspace of L?(X, u) such that

SN g(x) converges as N — oo for every z € X and every ¢ > 0. From lemmas 13,
14, and the above remark the result of Theorem 4 follows the standard argument
of pointwise convergence (see [4]). O
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