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APPROXIMATION OF SOLUTION OF FRACTIONAL

DIFFUSIONS IN COMPACT METRIC MEASURE SPACES

MARCELO ACTIS AND HUGO AIMAR

Abstract. In this note we prove that the solutions to diffusions associated
to fractional powers of the Laplacian in compact metric measure spaces can

be obtained as limits of the solutions to particular rescalings of some nonlocal

diffusions with integrable kernels. The abstract approach considered here has
several particular and interesting instances.

1. Introduction

The Cauchy problem for the heat equation in Rn, i.e. ut = ∆u in Rn+1
+ , with

u(x, 0) = u0 in Rn, admits an immediate generalization to the case of nonlocal
diffusions. In this case, the Laplacian in the spatial variables is replaced by the
fractional Laplacian operator of order s with 0 < s < 2, which is given by

(1.1) − (−∆)s/2f(x) = cn,s v.p.

∫
f(x)− f(y)

|x− y|n+s
dy,

and is a representation of the generalized Dirichlet to Neumann operator (see [6]).
The standard linear evolution equation ut = −(−∆)s/2u involving the fractional
Laplacian have been widely studied and usually used in modeling processes like
anomalous diffusion (see [15] and the references therein).

The aim of this paper is to approach the study of fractional diffusions in metric
measure spaces where despite of the lack of differential structure in these contexts
problems associated to nonlocal operators can be considered. As it is explicitly
observed in [5], usually the solutions to nonlocal evolution equations with integrable
kernels approximate solutions of some classical local evolution problems such as the
heat equation (see [9]). What we do here is to extend this basic principle both to
nonlocal and to non-Eeuclidean settings. For a related approach in the euclidean
case see [10, 11].

Let us observe that there are several settings where the application of our main
result, contained in Theorem 8, can provide good approximation of solutions. In
particular we shall deal with two applications in the Section 5 of this paper:

• The unit circle of the complex plane.
• Dyadic compact metric measure space.

The above seemingly diverse settings can be unified in their approach by noticing
that all of them have the same structural form in Ahlfors regular spaces. We say
that a metric measure space (X, d, µ) is an Ahlfors α-regular space if there exists
two positive constants, say c1 and c2, such that

c1r
α ≤ µ(B(x, r)) ≤ c2rα,

for all x ∈ X and for all real number r ≤ diam(X), where B(x, r) denotes the
d-ball centered in x of radius r and diam(X) = sup{d(x, y) : x, y ∈ X} denotes the
diameter of the whole space X.
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2 M. ACTIS AND H. AIMAR

In this generalized context the fractional diffusion problem takes the form

(1.2)

{
ut(x, t) = −Dsu(x, t), x ∈ X, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ X,

where Ds is the natural extension given by (1.1) of the fractional Laplacian to
Ahlfors α-regular spaces, i.e.

Dsf(x) =

∫
X

f(x)− f(y)
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d(x, y)r
.

Let J : X ×X → R+ be a non-negative measurable function with respect to the
product σ-algebra in X ×X satisfying the following properties

(i) J(x, y) = J(y, x), for all x, y ∈ X;
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APPROXIMATION OF SOLUTION OF FRACTIONAL DIFFUSIONS 3

(ii) J is integrable in each variable uniformly in the other, i.e.∫
X

J(x, y)dµ(y) ≤ β, ∀x ∈ X.

(iii) J(·, y) is Lipschitz continuous of order r > 0 uniformly in y ∈ X, i.e.

[J(·, y)]Λr
≤ λ, ∀y ∈ X.

Notice that in the case of X bounded the L∞-norm is controlled by de Lipschitz
seminorm, then property (iii) implies (ii).

Given T ∈ R+ fixed and u0 ∈ Λr(X, d, µ) we consider the nonlocal problem

(2.2)

{
ut(x, t) =

∫
X
J(x, y)[u(y, t)− u(x, t)]dµ(y), x ∈ X, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ X,

We say that a function u is a solution of (2.2) if u belongs to

BΛr
= C1((0, T ); Λr(X, d, µ)) ∩ C(([0, T ]; Λr(X, d, µ))

and satisfies

u(x, t) = u0(x) +

∫ t

0

∫
X

J(x, y)(u(y, s)− u(x, s)) dµ(y) ds,

where the integral in the right hand side is formally understood as a Bochner
integral. Existence and uniqueness of solutions of problem (2.2) are consequence
of the Banach fixed point theorem and will be shown in Theorem 3. First, let us
state two auxiliary lemmas.

Given t0 > 0, let Xt0 be the space of continuous functions from [0, t0] to Λr(X, d, µ),
i.e.

Xt0 = C([0, t0]; Λr(X, d, µ)),

which is a Banach space once is equipped with the norm

|||w|||r = max
t∈[0,t0]

‖w(·, t)‖Λr
.

For any w0 ∈ Λr(X, d, µ), let Tw0
be the operator defined on Xt0 by

(2.3) Tw0
(w)(x, t) = w0(x) +

∫ t

0

∫
X

J(x, y)(w(y, s)− w(x, s)) dµ(y) ds.

Lemma 1. The operator Tw0
maps Xt0 into Xt0 .

Proof. Notice that for any t ∈ R+ and any x, z ∈ X we have that

|Tw0
(w)(x, t)− Tw0

(w)(z, t)| ≤
∣∣∣∣∫ t

0

∫
X

[J(x, y)− J(z, y)]w(y, s) dµ(y) ds

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
X

[J(x, y)− J(z, y)]w(z, s) dµ(y) ds

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
X

J(x, y)[w(x, s)− w(z, s)] dµ(y) ds

∣∣∣∣
≤ 2tµ(X) sup

y∈X
[J(·, y)]Λr

sup
t∈[0,t0]

‖w(·, t)‖∞d(x, z)r

+ tµ(X)

∫
X

J(x, y)dµ(y) sup
t∈[0,t0]

[w(·, t)]Λr
d(x, z)r

Hence, by properties (ii) and (iii), we obtain

(2.4) |Tw0
(w)(x, t)− Tw0

(w)(z, t)| ≤ Ct |||w|||r d(x, z)r.
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4 M. ACTIS AND H. AIMAR

Then [Tw0
(w)(·, t)−w0]Λr

≤ Ct, which proves the continuity at t = 0. Analogously,
if t1, t2 ∈ R+ such that 0 < t1 < t2 ≤ 0 then we obtain that

[Tw0(w)(·, t1)− Tw0(w)(·, t2)]Λr ≤ C(t1 − t2).

So clearly Tw0
(w) ∈ Xt0 . �

Lemma 2. Let w, v ∈ Xt0 then

|||Tw0(w)− Tw0(v)|||r ≤ Ct0 |||w − v|||r .

Proof. Let 0 < t < t0 and u := w−v. Notice that [Tw0
(w)−Tw0

(v)]Λr
= [Tw0

(u)]Λr
.

Since by (2.4)

|Tw0(u)(x, t)− Tw0(u)(z, t)| ≤ Ct |||u|||r d(x, z)r,

then [Tw0
(u)]Λr

≤ Ct |||u|||r. Therefore [Tw0
(w) − Tw0

(v)]Λr
≤ Ct0 |||w − v|||r as

desired. �

Theorem 3 (Existence and uniqueness). Let u0 ∈ Λr(X, d, µ) and J satisfying (i),
(ii) and (ii). Then there exists a unique solution u ∈ BΛr

of (2.2).

Proof. Taking t0 in Lemma 2 satisfying Ct0 < 1 we obtain that Tu0 is a contractive
operator on Xt0 . Then the existence and uniqueness of a solution satisfying (2.2)
follows from the Banach fixed point theorem on the interval [0, t0].

To extend the solution to [0, T ], we take as initial data u(x, t0) ∈ Λr(X, d, µ)
to obtain a solution up to [0, 2t0]. Iterating this process we get a solution defined
on [0, T ]. �

Finally, we present our last preliminary result. It is a comparison principle which
shall be useful at proving our main result.

We say that a function u ∈ BC = C1((0, T ), C(X)) ∩ C([0, T ], C(X)) is a super-
solution of (2.2) if ut(x, t) ≥

∫
X

J(x, y)[u(y, t)− u(x, t)] dµ(y), x ∈ X, t ∈ (0, T ),

u(x, 0) ≥ u0(x), x ∈ X.

Lemma 4 (Comparison principle). Let u ∈ BC be a supersolution of (2.2) with
initial datum u0 ∈ C(X) and such that u0 ≥ 0. Then u ≥ 0.

Proof. Suppose that u is negative somewhere. Let v(x, t) = u(x, t) + εt, with ε
small enough to make v negative at some point. So, if (x0, t0) is the point where v
reaches its minimum, then t0 > 0 (since v(x, 0) = u(x, 0) ≥ 0) and further

vt(x0, t0) = ut(x0, t0) + ε >

∫
X

J(x, y)[u(y, t0)− u(x, t0)]dµ(y)

=

∫
X

J(x, y)[v(y, t0)− v(x, t0)]dµ(y) ≥ 0.

Therefore, vt(x0, t0) > 0 which contradicts the fact that (x0, t0) is a point where v
reaches its minimum. Then, u ≥ 0. �

3. Approximation of Ds by rescaling kernels

In this section (X, d, µ) is an Ahlfors α-regular space, i.e. there exists two positive
constants c1 and c2 such that

(3.1) c1r
α ≤ µ(B(x, r)) ≤ c2rα,

for all x ∈ X and for all r < 2 diam(X). This situation, although restrictive, is
natural in lots of classic geometric contexts as manifolds and even fractals coming
from iterated function systems like the Cantor set or the Sierpinski gasket (see [13]).
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APPROXIMATION OF SOLUTION OF FRACTIONAL DIFFUSIONS 5

The first result in this section is an elementary lemma which reflects the α
dimensional character of X under the assumption (3.1). For the sake of notational
simplicity we shall write A ' B when the quotient A/B is bounded above and
below by positive and finite constants. In a similar way we write A . B when A/B
is bounded above.

Lemma 5. Let (X, d, µ) be an Ahlfors α-regular space. Then for any δ > 0 and
any r > 0 we have that ∫

X\B(x,r)

dµ(y)

d(x, y)α+δ
' r−δ

and ∫
B(x,r)

dµ(y)

d(x, y)α−δ
' rδ,

where the hidden constants only depend on α and δ.

Proof. In order to prove the second estimate let us rewrite B(x, r) as the union of
annuli of the form Aj = B(x, 2−(j−1)r)\B(x, 2−jr), with j ∈ N. Hence∫

B(x,r)

dµ(y)

d(x, y)α−δ
=
∞∑
j=1

∫
Aj

dµ(y)

d(x, y)α−δ

≤
∞∑
j=1

(
2−jr

)−α+δ
∫
Aj

dµ(y)

≤
∞∑
j=1

(
2−jr

)−α+δ
µ(B(x, 2−(j−1)r)).

Therefore, by the upper bound in (3.1) we obtain∫
B(x,r)

dµ(y)

d(x, y)α−δ
≤ c2

∞∑
j=1

(
2−jr

)−α+δ
(2−(j−1)r)α ≤ c2

2α

2δ − 1
rδ.

In an analogous way it can be proved the lower bound and also the estimate over
X\B(x, r). �

The fractional derivative operator Ds, with 0 < s < 1, given by

Dsf(x) =

∫
X

f(x)− f(y)

d(x, y)α+s
dµ(y),

is well defined for f ∈ Λr(X, d, µ), with s < r ≤ 1. Indeed, if we call B := B(x, 1)
then ∫

X

f(x)− f(y)

d(x, y)α+s
dµ(y) =

∫
B

f(x)− f(y)

d(x, y)α+s
dµ(y) +

∫
X\B

f(x)− f(y)

d(x, y)α+s
dµ(y).(3.2)

Since f satisfies (2.1) then∫
B

f(x)− f(y)

d(x, y)α+s
dµ(y) ≤ [f ]Λr

∫
B

dµ(y)

d(x, y)α−(r−s) .

Then from Lemma 5 we obtain∫
B

f(x)− f(y)

d(x, y)α+s
dµ(y) . [f ]Λr

.(3.3)

To estimate the integral over X\B of (3.2) we use the fact that f is bounded and
again the Lemma 5,∫

X\B

f(x)− f(y)

d(x, y)α+s
dµ(y) ≤ 2‖f‖L∞

∫
X\B

dµ(y)

d(x, y)α+s
. ‖f‖L∞ .(3.4)
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6 M. ACTIS AND H. AIMAR

Therefore, from (3.2), (3.3) and (3.4) we get that

|Dsf(x)| . ‖f‖Λr .

To build the approximations to Ds, take ψ : R+ → R+
0 defined by

ψ(t) =

{
1, si t < 1,
t−α−s, si t ≥ 1.

For each 0 < ε ≤ 1 we define a kernel Jε in the following way,

(3.5) Jε(x, y) :=
1

εα
ψ

(
d(x, y)

ε

)
.

Lemma 6. The kernels Jε defined by (3.5) are symmetric and positive. Moreover,

(3.6)

∫
X

Jε(x, y) dµ(y) ' C,

where C is a constant independent of ε and for 0 < r ≤ 1

(3.7) [Jε(·, y)]Λr
. ε−(α+r).

Proof. The symmetry and the positivity are inherited from the distance d and the
function ψ, respectively. Besides,∫

X

Jε(x, y) dµ(y) =
1

εα

∫
X

ψ

(
d(x, y)

ε

)
dµ(y)

=
1

εα

[∫
B(x,ε)

dµ(y) + εα+s

∫
X\B(x,ε)

dµ(y)

d(x, y)α+s

]
.

Hence, by (3.1) and Lemma 5 we obtain (3.6).
On the other hand, since |ψ′| ≤ α+ s we have

|Jε(x, y)− Jε(z, y)| = 1

εα

∣∣∣∣ψ(d(x, y)

ε

)
− ψ

(
d(z, y)

ε

)∣∣∣∣
≤ [ψ]Λr

εα

∣∣∣∣d(x, y)
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ε

∣∣∣∣r
≤ α+ s

εα+r
d(x, y)r,

which implies (3.7), so the proof is completed. �

Finally let Lε be an operator given by

Lεf(x) =
1

εs

∫
X

Jε(x, y)[f(y)− f(x)] dµ(y).

The next statement shows that Lε converge weakly to Ds as ε→ 0.

Theorem 7 (Weak approximation). Let f ∈ Λr(X, d, µ) then

sup
x∈X
|Lεf(x)−Dsf(x)| . [f ]Λr

εr−s.

Proof. Since f ∈ Λr(X, d, µ) then Dsf and Lεf are well defined. Furthermore
notice that ∣∣∣∣ 1

εs
Jε(x, y)− ks(x, y)

∣∣∣∣ ≤ χ{d(x,y)<ε}

d(x, y)α+s
.

Hence we obtain that

|Lεf(x)−Dsf(x)| =
∣∣∣∣∫
X

[
1

εs
Jε(x, y)− ks(x, y)

]
[f(y)− f(x)] dµ(y)

∣∣∣∣
≤
∫
B(x,ε)

|f(y)− f(x)|
d(x, y)α+s

dµ(y)
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APPROXIMATION OF SOLUTION OF FRACTIONAL DIFFUSIONS 7

≤ [f ]Λr

∫
B(x,ε)

dµ(y)

d(x, y)α−(r−s) .

Thus by Lemma 5 we get that

|Lεf(x)−Dsf(x)| . [f ]Λr
εr−s

and so the result is immediate. �

4. Main result

For each ε ∈ (0, 1) the kernel Jε defined in (3.5) satisfies (ii) and (iii), then the
problem

(4.1)

{
ut(x, t) = Lεu(x, t), x ∈ X, t ∈ (0, T )

u(x, 0) = u0(x), x ∈ X.

has a unique solution uε ∈ BΛr
.

The next theorem shows that, provided a solution v of problem 1.2 then the
solutions uε of the problems (4.1) converge to v as ε→ 0+.

Theorem 8. Let u0 ∈ Λr(X, d, µ) and let s, r ∈ R be such that 0 < s < r ≤ 1.
Suppose there exists a solution v(x, t) ∈ BΛr

of the problem

(4.2)

{
vt(x, t) = −Dsv(x, t), x ∈ X, t ∈ (0, T ),

v(x, 0) = u0(x), x ∈ X.

Then the solutions uε of the problems (4.1) satisfy

|||v − uε|||∞ := sup
t∈[0,T ]

sup
x∈X
|v(x, t)− uε(x, t)| . Tεr−s.

Proof. Let wε = v − uε. Observe that{
wεt(x, t) = Lεw

ε(x, t) + Fε(x, t), x ∈ X, t ∈ (0, T ),

wε(x, 0) = 0, x ∈ X,

where Fε(x, t) = Dsv(x, t)− Lεv(x, t).
Define z = kεr−st− wε, where k is a arbitrary constant. Observe that

zt(x, t) = kεr−s − wεt(x, t) = kεr−s − (Lεw
ε(x, t) + Fε(x, t)).

We already know by Theorem 7 that |Fε(x, t)| . εr−s. Thus, choosing k large
enough we have that kεθ − Fε(x, t) ≥ 0. Then

zt(x, t) ≥ −Lεwε(x, t) = Lεz(x, t).

Therefore z is a supersolution of the problem (4.1). Since z(x, 0) = 0 then by
Lemma 4 it turns out that
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(x, t) = kεr−st + wε(x, t) we can prove that z(x, t) ≥ 0 and so wε(x, t) ≥
kεr−st. Thereby

|v(x, t)− uε(x, t)| = |wε(x, t)| ≤ kεr−st
which implies that

sup
t∈[0,T ]

sup
x∈X
|v(x, t)− uε(x, t)| . Tεr−s.

�
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8 M. ACTIS AND H. AIMAR

The abstract approach considered here has several particular and interesting
instances. One main disadvantage is that we required the a priori existence of
solution of problem (4.2). However, we believe that is possible to prove the Cauchy
character of the approximant sequence even when no assumption on the existence
of solution for the fractional diffusion is made.

5. Applications

Let us finally provide two quite different settings in which our main result applies.
The first one is the very classical case of the unit circle and the second is the abstract
situation provided by dyadic metrics on spaces of homogeneous type. Let us start
by the classical case. Set S1 to denote the unit circle of the complex plane and
D to denote the disc with boundary S1. The Poisson kernel written in its series
expansion in D is given by

Pr(θ) =
∑
k∈Z

r|k|eikθ,

where 0 < r < 1 and θ parametrizes S1 with −π < θ < π. For the unit disc
the direction of the outer normal to S1 coincides with the direction of increasing
of the variable r. Hence the normal derivative of the harmonic function Pr(θ) at
the boundary of the disc can be computed as ∂Pr

∂r

∣∣
r=1

. This procedure gives the
natural ”first order” differential operator

∂Pr
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1− 2r cos θ + r2
.

Taking the partial derivative of Pr(θ) with respect to r in this formula and taking
then the value of this derivative for r = 1, we can easily get a new expression for
the Neumann condition for Pr(θ) on S1. Namely

∂Pr
∂r

(θ)

∣∣∣∣
r=1

= C
1

1− cos θ
.

Now, from cosine theorem, if d(z, z′) denotes the restriction to S1 of the euclidean
distance on R2 we have with z = eiθ

d2(z, 1) = 2(1− cos θ).

Hence the Neumann condition for the Poisson kernel of the disc can be written as

∂P

∂~n
(z) =

C

d2(z, 1)
,

which has the expected behavior in terms of the metric for the first order non local
operator on S1. Of course this extend naturally, since (S1, d, length) is a bounded
1-Ahlfors regular space to any 0 < s < 1 by the kernel d(z, 1)−(1+s).

Our second application deals with the operator considered in [1] in the bounded
case. Let us briefly introduce the setting. For a more detailed approach see [1].

Let (X, d, µ) be a compact space of homogeneous type (see [12]). Let D be a
dyadic family in X as constructed by M. Christ in [7]. Let H be a Haar system
for Lp(X,µ) = {f ∈ Lp(X,µ) :

∫
X
f dµ = 0} associated to D as built in [4]. The

system H is an unconditional basis for Lp(X,µ), for 1 < p < ∞ (see [4]). By
Q(h) we denote the dyadic cube on which h is based, i.e. the smallest member of
D containing the set {x ∈ X : h(x) 6= 0}.
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APPROXIMATION OF SOLUTION OF FRACTIONAL DIFFUSIONS 9

A distance in X associated to D can be defined by δ(x, y) = min{µ(Q) : Q ∈
D such that x, y ∈ Q} when x 6= y and δ(x, x) = 0. The space X equipped with
δ and µ turns out to be a 1-Ahlfors regular space. Then the fractional differential
operator of order s, with 0 < s < 1, given by

Dsf(x) =

∫
X

f(x)− f(y)

δ(x, y)1+s
dµ(y)

is well defined for every Lipschitz continuous function of order r with respect to δ,
for s < r ≤ 1.

In this context, the solution of problem (4.2) is given by

(5.1) v(x, t) =
∑
h∈H

e−mhµ(Q(h))−st〈u0, h〉h(x),

where mh are bounded above and below by positive constants (see Theorem 4.2
in [1]). If the initial datum u0 belongs to Λr(X, δ, µ) it can easily be prove that v
also belongs to Λr(X, δ, µ) for every t > 0 (see Theorem 1.2 in [3]).

6. Conclusions

We have presented a new approach to approximate the solution of diffusions as-
sociated to fractional powers of the Laplacian as limits of the solutions to particular
rescalings of some nonlocal diffusions with integrable kernels. The theory is valid in
a general setting of metric measure spaces, which include fractals, manifolds and do-
mains of Rn as particular cases. We proved error estimates in L∞([0, T ];L∞(X,µ))
whenever the initial datum belongs to a Lipschitz spaces with regularity greater
than the order of the fractional derivative.

We also have studied some existence theorems for nonlocal diffusions associated
to integrable and Lipschitz kernels and a comparison principle.

The abstract approach considered here has several particular and interesting
instances. One main disadvantage is that we required the a priori existence of
solution of problem (4.2). However, we believe that is possible to prove the Cauchy
character of the approximant sequence even when no assumption on the existence of
solution for the fractional diffusion is made. We did not dwell on this matter in this
article, but rather on the proposal of a first approximation method for fractional
diffusions on Ahlfors regular spaces, and the proof of error estimates.

As a future work, we want to combine the result obtained in this work with the
numerical method recently develop in [2] to approximate the solution of nonlocal
diffusion problem like (4.1). Therefore we will be able to approximate numerically
the solution of the fractional diffusion problem on a general setting of compact
metric measure spaces.
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APPROXIMATION OF SOLUTION OF FRACTIONAL


DIFFUSIONS IN COMPACT METRIC MEASURE SPACES


MARCELO ACTIS AND HUGO AIMAR


Abstract. In this note we prove that the solutions to diffusions associated
to fractional powers of the Laplacian in compact metric measure spaces can


be obtained as limits of the solutions to particular rescalings of some nonlocal


diffusions with integrable kernels. The abstract approach considered here has
several particular and interesting instances.


1. Introduction


The Cauchy problem for the heat equation in Rn, i.e. ut = ∆u in Rn+1
+ , with


u(x, 0) = u0 in Rn, admits an immediate generalization to the case of nonlocal
diffusions. In this case, the Laplacian in the spatial variables is replaced by the
fractional Laplacian operator of order s with 0 < s < 2, which is given by


(1.1) − (−∆)s/2f(x) = cn,s v.p.


∫
f(x)− f(y)


|x− y|n+s
dy,


and is a representation of the generalized Dirichlet to Neumann operator (see [6]).
The standard linear evolution equation ut = −(−∆)s/2u involving the fractional
Laplacian have been widely studied and usually used in modeling processes like
anomalous diffusion (see [15] and the references therein).


The aim of this paper is to approach the study of fractional diffusions in metric
measure spaces where despite of the lack of differential structure in these contexts
problems associated to nonlocal operators can be considered. As it is explicitly
observed in [5], usually the solutions to nonlocal evolution equations with integrable
kernels approximate solutions of some classical local evolution problems such as the
heat equation (see [9]). What we do here is to extend this basic principle both to
nonlocal and to non-Eeuclidean settings. For a related approach in the euclidean
case see [10, 11].


Let us observe that there are several settings where the application of our main
result, contained in Theorem 8, can provide good approximation of solutions. In
particular we shall deal with two applications in the Section 5 of this paper:


• The unit circle of the complex plane.
• Dyadic compact metric measure space.


The above seemingly diverse settings can be unified in their approach by noticing
that all of them have the same structural form in Ahlfors regular spaces. We say
that a metric measure space (X, d, µ) is an Ahlfors α-regular space if there exists
two positive constants, say c1 and c2, such that


c1r
α ≤ µ(B(x, r)) ≤ c2rα,


for all x ∈ X and for all real number r ≤ diam(X), where B(x, r) denotes the
d-ball centered in x of radius r and diam(X) = sup{d(x, y) : x, y ∈ X} denotes the
diameter of the whole space X.


2000 Mathematics Subject Classification. Primary ...
Key words and phrases. ...
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2 M. ACTIS AND H. AIMAR


In this generalized context the fractional diffusion problem takes the form


(1.2)


{
ut(x, t) = −Dsu(x, t), x ∈ X, t ∈ (0, T ),


u(x, 0) = u0(x), x ∈ X,


where Ds is the natural extension given by (1.1) of the fractional Laplacian to
Ahlfors α-regular spaces, i.e.


Dsf(x) =


∫
X


f(x)− f(y)
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d(x, y)r
.


Let J : X ×X → R+ be a non-negative measurable function with respect to the
product σ-algebra in X ×X satisfying the following properties


(i) J(x, y) = J(y, x), for all x, y ∈ X;
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APPROXIMATION OF SOLUTION OF FRACTIONAL DIFFUSIONS 3


(ii) J is integrable in each variable uniformly in the other, i.e.∫
X


J(x, y)dµ(y) ≤ β, ∀x ∈ X.


(iii) J(·, y) is Lipschitz continuous of order r > 0 uniformly in y ∈ X, i.e.


[J(·, y)]Λr
≤ λ, ∀y ∈ X.


Notice that in the case of X bounded the L∞-norm is controlled by de Lipschitz
seminorm, then property (iii) implies (ii).


Given T ∈ R+ fixed and u0 ∈ Λr(X, d, µ) we consider the nonlocal problem


(2.2)


{
ut(x, t) =


∫
X
J(x, y)[u(y, t)− u(x, t)]dµ(y), x ∈ X, t ∈ [0, T ],


u(x, 0) = u0(x), x ∈ X,


We say that a function u is a solution of (2.2) if u belongs to


BΛr
= C1((0, T ); Λr(X, d, µ)) ∩ C(([0, T ]; Λr(X, d, µ))


and satisfies


u(x, t) = u0(x) +


∫ t


0


∫
X


J(x, y)(u(y, s)− u(x, s)) dµ(y) ds,


where the integral in the right hand side is formally understood as a Bochner
integral. Existence and uniqueness of solutions of problem (2.2) are consequence
of the Banach fixed point theorem and will be shown in Theorem 3. First, let us
state two auxiliary lemmas.


Given t0 > 0, let Xt0 be the space of continuous functions from [0, t0] to Λr(X, d, µ),
i.e.


Xt0 = C([0, t0]; Λr(X, d, µ)),


which is a Banach space once is equipped with the norm


|||w|||r = max
t∈[0,t0]


‖w(·, t)‖Λr
.


For any w0 ∈ Λr(X, d, µ), let Tw0
be the operator defined on Xt0 by


(2.3) Tw0
(w)(x, t) = w0(x) +


∫ t


0


∫
X


J(x, y)(w(y, s)− w(x, s)) dµ(y) ds.


Lemma 1. The operator Tw0
maps Xt0 into Xt0 .


Proof. Notice that for any t ∈ R+ and any x, z ∈ X we have that


|Tw0
(w)(x, t)− Tw0


(w)(z, t)| ≤
∣∣∣∣∫ t


0


∫
X


[J(x, y)− J(z, y)]w(y, s) dµ(y) ds


∣∣∣∣
+


∣∣∣∣∫ t


0


∫
X


[J(x, y)− J(z, y)]w(z, s) dµ(y) ds


∣∣∣∣
+


∣∣∣∣∫ t


0


∫
X


J(x, y)[w(x, s)− w(z, s)] dµ(y) ds


∣∣∣∣
≤ 2tµ(X) sup


y∈X
[J(·, y)]Λr


sup
t∈[0,t0]


‖w(·, t)‖∞d(x, z)r


+ tµ(X)


∫
X


J(x, y)dµ(y) sup
t∈[0,t0]


[w(·, t)]Λr
d(x, z)r


Hence, by properties (ii) and (iii), we obtain


(2.4) |Tw0
(w)(x, t)− Tw0


(w)(z, t)| ≤ Ct |||w|||r d(x, z)r.
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4 M. ACTIS AND H. AIMAR


Then [Tw0
(w)(·, t)−w0]Λr


≤ Ct, which proves the continuity at t = 0. Analogously,
if t1, t2 ∈ R+ such that 0 < t1 < t2 ≤ 0 then we obtain that


[Tw0(w)(·, t1)− Tw0(w)(·, t2)]Λr ≤ C(t1 − t2).


So clearly Tw0
(w) ∈ Xt0 . �


Lemma 2. Let w, v ∈ Xt0 then


|||Tw0(w)− Tw0(v)|||r ≤ Ct0 |||w − v|||r .


Proof. Let 0 < t < t0 and u := w−v. Notice that [Tw0
(w)−Tw0


(v)]Λr
= [Tw0


(u)]Λr
.


Since by (2.4)


|Tw0(u)(x, t)− Tw0(u)(z, t)| ≤ Ct |||u|||r d(x, z)r,


then [Tw0
(u)]Λr


≤ Ct |||u|||r. Therefore [Tw0
(w) − Tw0


(v)]Λr
≤ Ct0 |||w − v|||r as


desired. �


Theorem 3 (Existence and uniqueness). Let u0 ∈ Λr(X, d, µ) and J satisfying (i),
(ii) and (ii). Then there exists a unique solution u ∈ BΛr


of (2.2).


Proof. Taking t0 in Lemma 2 satisfying Ct0 < 1 we obtain that Tu0 is a contractive
operator on Xt0 . Then the existence and uniqueness of a solution satisfying (2.2)
follows from the Banach fixed point theorem on the interval [0, t0].


To extend the solution to [0, T ], we take as initial data u(x, t0) ∈ Λr(X, d, µ)
to obtain a solution up to [0, 2t0]. Iterating this process we get a solution defined
on [0, T ]. �


Finally, we present our last preliminary result. It is a comparison principle which
shall be useful at proving our main result.


We say that a function u ∈ BC = C1((0, T ), C(X)) ∩ C([0, T ], C(X)) is a super-
solution of (2.2) if ut(x, t) ≥


∫
X


J(x, y)[u(y, t)− u(x, t)] dµ(y), x ∈ X, t ∈ (0, T ),


u(x, 0) ≥ u0(x), x ∈ X.


Lemma 4 (Comparison principle). Let u ∈ BC be a supersolution of (2.2) with
initial datum u0 ∈ C(X) and such that u0 ≥ 0. Then u ≥ 0.


Proof. Suppose that u is negative somewhere. Let v(x, t) = u(x, t) + εt, with ε
small enough to make v negative at some point. So, if (x0, t0) is the point where v
reaches its minimum, then t0 > 0 (since v(x, 0) = u(x, 0) ≥ 0) and further


vt(x0, t0) = ut(x0, t0) + ε >


∫
X


J(x, y)[u(y, t0)− u(x, t0)]dµ(y)


=


∫
X


J(x, y)[v(y, t0)− v(x, t0)]dµ(y) ≥ 0.


Therefore, vt(x0, t0) > 0 which contradicts the fact that (x0, t0) is a point where v
reaches its minimum. Then, u ≥ 0. �


3. Approximation of Ds by rescaling kernels


In this section (X, d, µ) is an Ahlfors α-regular space, i.e. there exists two positive
constants c1 and c2 such that


(3.1) c1r
α ≤ µ(B(x, r)) ≤ c2rα,


for all x ∈ X and for all r < 2 diam(X). This situation, although restrictive, is
natural in lots of classic geometric contexts as manifolds and even fractals coming
from iterated function systems like the Cantor set or the Sierpinski gasket (see [13]).
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APPROXIMATION OF SOLUTION OF FRACTIONAL DIFFUSIONS 5


The first result in this section is an elementary lemma which reflects the α
dimensional character of X under the assumption (3.1). For the sake of notational
simplicity we shall write A ' B when the quotient A/B is bounded above and
below by positive and finite constants. In a similar way we write A . B when A/B
is bounded above.


Lemma 5. Let (X, d, µ) be an Ahlfors α-regular space. Then for any δ > 0 and
any r > 0 we have that ∫


X\B(x,r)


dµ(y)


d(x, y)α+δ
' r−δ


and ∫
B(x,r)


dµ(y)


d(x, y)α−δ
' rδ,


where the hidden constants only depend on α and δ.


Proof. In order to prove the second estimate let us rewrite B(x, r) as the union of
annuli of the form Aj = B(x, 2−(j−1)r)\B(x, 2−jr), with j ∈ N. Hence∫


B(x,r)


dµ(y)


d(x, y)α−δ
=
∞∑
j=1


∫
Aj


dµ(y)


d(x, y)α−δ


≤
∞∑
j=1


(
2−jr


)−α+δ
∫
Aj


dµ(y)


≤
∞∑
j=1


(
2−jr


)−α+δ
µ(B(x, 2−(j−1)r)).


Therefore, by the upper bound in (3.1) we obtain∫
B(x,r)


dµ(y)


d(x, y)α−δ
≤ c2


∞∑
j=1


(
2−jr


)−α+δ
(2−(j−1)r)α ≤ c2


2α


2δ − 1
rδ.


In an analogous way it can be proved the lower bound and also the estimate over
X\B(x, r). �


The fractional derivative operator Ds, with 0 < s < 1, given by


Dsf(x) =


∫
X


f(x)− f(y)


d(x, y)α+s
dµ(y),


is well defined for f ∈ Λr(X, d, µ), with s < r ≤ 1. Indeed, if we call B := B(x, 1)
then ∫


X


f(x)− f(y)


d(x, y)α+s
dµ(y) =


∫
B


f(x)− f(y)


d(x, y)α+s
dµ(y) +


∫
X\B


f(x)− f(y)


d(x, y)α+s
dµ(y).(3.2)


Since f satisfies (2.1) then∫
B


f(x)− f(y)


d(x, y)α+s
dµ(y) ≤ [f ]Λr


∫
B


dµ(y)


d(x, y)α−(r−s) .


Then from Lemma 5 we obtain∫
B


f(x)− f(y)


d(x, y)α+s
dµ(y) . [f ]Λr


.(3.3)


To estimate the integral over X\B of (3.2) we use the fact that f is bounded and
again the Lemma 5,∫


X\B


f(x)− f(y)


d(x, y)α+s
dµ(y) ≤ 2‖f‖L∞


∫
X\B


dµ(y)


d(x, y)α+s
. ‖f‖L∞ .(3.4)
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6 M. ACTIS AND H. AIMAR


Therefore, from (3.2), (3.3) and (3.4) we get that


|Dsf(x)| . ‖f‖Λr .


To build the approximations to Ds, take ψ : R+ → R+
0 defined by


ψ(t) =


{
1, si t < 1,
t−α−s, si t ≥ 1.


For each 0 < ε ≤ 1 we define a kernel Jε in the following way,


(3.5) Jε(x, y) :=
1


εα
ψ


(
d(x, y)


ε


)
.


Lemma 6. The kernels Jε defined by (3.5) are symmetric and positive. Moreover,


(3.6)


∫
X


Jε(x, y) dµ(y) ' C,


where C is a constant independent of ε and for 0 < r ≤ 1


(3.7) [Jε(·, y)]Λr
. ε−(α+r).


Proof. The symmetry and the positivity are inherited from the distance d and the
function ψ, respectively. Besides,∫


X


Jε(x, y) dµ(y) =
1


εα


∫
X


ψ


(
d(x, y)


ε


)
dµ(y)


=
1


εα


[∫
B(x,ε)


dµ(y) + εα+s


∫
X\B(x,ε)


dµ(y)


d(x, y)α+s


]
.


Hence, by (3.1) and Lemma 5 we obtain (3.6).
On the other hand, since |ψ′| ≤ α+ s we have


|Jε(x, y)− Jε(z, y)| = 1


εα


∣∣∣∣ψ(d(x, y)


ε


)
− ψ


(
d(z, y)


ε


)∣∣∣∣
≤ [ψ]Λr


εα


∣∣∣∣d(x, y)
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ε


∣∣∣∣r
≤ α+ s


εα+r
d(x, y)r,


which implies (3.7), so the proof is completed. �


Finally let Lε be an operator given by


Lεf(x) =
1


εs


∫
X


Jε(x, y)[f(y)− f(x)] dµ(y).


The next statement shows that Lε converge weakly to Ds as ε→ 0.


Theorem 7 (Weak approximation). Let f ∈ Λr(X, d, µ) then


sup
x∈X
|Lεf(x)−Dsf(x)| . [f ]Λr


εr−s.


Proof. Since f ∈ Λr(X, d, µ) then Dsf and Lεf are well defined. Furthermore
notice that ∣∣∣∣ 1


εs
Jε(x, y)− ks(x, y)


∣∣∣∣ ≤ χ{d(x,y)<ε}


d(x, y)α+s
.


Hence we obtain that


|Lεf(x)−Dsf(x)| =
∣∣∣∣∫
X


[
1


εs
Jε(x, y)− ks(x, y)


]
[f(y)− f(x)] dµ(y)


∣∣∣∣
≤
∫
B(x,ε)


|f(y)− f(x)|
d(x, y)α+s


dµ(y)
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APPROXIMATION OF SOLUTION OF FRACTIONAL DIFFUSIONS 7


≤ [f ]Λr


∫
B(x,ε)


dµ(y)


d(x, y)α−(r−s) .


Thus by Lemma 5 we get that


|Lεf(x)−Dsf(x)| . [f ]Λr
εr−s


and so the result is immediate. �


4. Main result


For each ε ∈ (0, 1) the kernel Jε defined in (3.5) satisfies (ii) and (iii), then the
problem


(4.1)


{
ut(x, t) = Lεu(x, t), x ∈ X, t ∈ (0, T )


u(x, 0) = u0(x), x ∈ X.


has a unique solution uε ∈ BΛr
.


The next theorem shows that, provided a solution v of problem 1.2 then the
solutions uε of the problems (4.1) converge to v as ε→ 0+.


Theorem 8. Let u0 ∈ Λr(X, d, µ) and let s, r ∈ R be such that 0 < s < r ≤ 1.
Suppose there exists a solution v(x, t) ∈ BΛr


of the problem


(4.2)


{
vt(x, t) = −Dsv(x, t), x ∈ X, t ∈ (0, T ),


v(x, 0) = u0(x), x ∈ X.


Then the solutions uε of the problems (4.1) satisfy


|||v − uε|||∞ := sup
t∈[0,T ]


sup
x∈X
|v(x, t)− uε(x, t)| . Tεr−s.


Proof. Let wε = v − uε. Observe that{
wεt(x, t) = Lεw


ε(x, t) + Fε(x, t), x ∈ X, t ∈ (0, T ),


wε(x, 0) = 0, x ∈ X,


where Fε(x, t) = Dsv(x, t)− Lεv(x, t).
Define z = kεr−st− wε, where k is a arbitrary constant. Observe that


zt(x, t) = kεr−s − wεt(x, t) = kεr−s − (Lεw
ε(x, t) + Fε(x, t)).


We already know by Theorem 7 that |Fε(x, t)| . εr−s. Thus, choosing k large
enough we have that kεθ − Fε(x, t) ≥ 0. Then


zt(x, t) ≥ −Lεwε(x, t) = Lεz(x, t).


Therefore z is a supersolution of the problem (4.1). Since z(x, 0) = 0 then by
Lemma 4 it turns out that
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(x, t) = kεr−st + wε(x, t) we can prove that z(x, t) ≥ 0 and so wε(x, t) ≥
kεr−st. Thereby


|v(x, t)− uε(x, t)| = |wε(x, t)| ≤ kεr−st
which implies that


sup
t∈[0,T ]


sup
x∈X
|v(x, t)− uε(x, t)| . Tεr−s.


�
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8 M. ACTIS AND H. AIMAR


The abstract approach considered here has several particular and interesting
instances. One main disadvantage is that we required the a priori existence of
solution of problem (4.2). However, we believe that is possible to prove the Cauchy
character of the approximant sequence even when no assumption on the existence
of solution for the fractional diffusion is made.


5. Applications


Let us finally provide two quite different settings in which our main result applies.
The first one is the very classical case of the unit circle and the second is the abstract
situation provided by dyadic metrics on spaces of homogeneous type. Let us start
by the classical case. Set S1 to denote the unit circle of the complex plane and
D to denote the disc with boundary S1. The Poisson kernel written in its series
expansion in D is given by


Pr(θ) =
∑
k∈Z


r|k|eikθ,


where 0 < r < 1 and θ parametrizes S1 with −π < θ < π. For the unit disc
the direction of the outer normal to S1 coincides with the direction of increasing
of the variable r. Hence the normal derivative of the harmonic function Pr(θ) at
the boundary of the disc can be computed as ∂Pr


∂r


∣∣
r=1


. This procedure gives the
natural ”first order” differential operator


∂Pr
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1− 2r cos θ + r2
.


Taking the partial derivative of Pr(θ) with respect to r in this formula and taking
then the value of this derivative for r = 1, we can easily get a new expression for
the Neumann condition for Pr(θ) on S1. Namely


∂Pr
∂r


(θ)


∣∣∣∣
r=1


= C
1


1− cos θ
.


Now, from cosine theorem, if d(z, z′) denotes the restriction to S1 of the euclidean
distance on R2 we have with z = eiθ


d2(z, 1) = 2(1− cos θ).


Hence the Neumann condition for the Poisson kernel of the disc can be written as


∂P


∂~n
(z) =


C


d2(z, 1)
,


which has the expected behavior in terms of the metric for the first order non local
operator on S1. Of course this extend naturally, since (S1, d, length) is a bounded
1-Ahlfors regular space to any 0 < s < 1 by the kernel d(z, 1)−(1+s).


Our second application deals with the operator considered in [1] in the bounded
case. Let us briefly introduce the setting. For a more detailed approach see [1].


Let (X, d, µ) be a compact space of homogeneous type (see [12]). Let D be a
dyadic family in X as constructed by M. Christ in [7]. Let H be a Haar system
for Lp(X,µ) = {f ∈ Lp(X,µ) :


∫
X
f dµ = 0} associated to D as built in [4]. The


system H is an unconditional basis for Lp(X,µ), for 1 < p < ∞ (see [4]). By
Q(h) we denote the dyadic cube on which h is based, i.e. the smallest member of
D containing the set {x ∈ X : h(x) 6= 0}.
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APPROXIMATION OF SOLUTION OF FRACTIONAL DIFFUSIONS 9


A distance in X associated to D can be defined by δ(x, y) = min{µ(Q) : Q ∈
D such that x, y ∈ Q} when x 6= y and δ(x, x) = 0. The space X equipped with
δ and µ turns out to be a 1-Ahlfors regular space. Then the fractional differential
operator of order s, with 0 < s < 1, given by


Dsf(x) =


∫
X


f(x)− f(y)


δ(x, y)1+s
dµ(y)


is well defined for every Lipschitz continuous function of order r with respect to δ,
for s < r ≤ 1.


In this context, the solution of problem (4.2) is given by


(5.1) v(x, t) =
∑
h∈H


e−mhµ(Q(h))−st〈u0, h〉h(x),


where mh are bounded above and below by positive constants (see Theorem 4.2
in [1]). If the initial datum u0 belongs to Λr(X, δ, µ) it can easily be prove that v
also belongs to Λr(X, δ, µ) for every t > 0 (see Theorem 1.2 in [3]).


6. Conclusions


We have presented a new approach to approximate the solution of diffusions as-
sociated to fractional powers of the Laplacian as limits of the solutions to particular
rescalings of some nonlocal diffusions with integrable kernels. The theory is valid in
a general setting of metric measure spaces, which include fractals, manifolds and do-
mains of Rn as particular cases. We proved error estimates in L∞([0, T ];L∞(X,µ))
whenever the initial datum belongs to a Lipschitz spaces with regularity greater
than the order of the fractional derivative.


We also have studied some existence theorems for nonlocal diffusions associated
to integrable and Lipschitz kernels and a comparison principle.


The abstract approach considered here has several particular and interesting
instances. One main disadvantage is that we required the a priori existence of
solution of problem (4.2). However, we believe that is possible to prove the Cauchy
character of the approximant sequence even when no assumption on the existence of
solution for the fractional diffusion is made. We did not dwell on this matter in this
article, but rather on the proposal of a first approximation method for fractional
diffusions on Ahlfors regular spaces, and the proof of error estimates.


As a future work, we want to combine the result obtained in this work with the
numerical method recently develop in [2] to approximate the solution of nonlocal
diffusion problem like (4.1). Therefore we will be able to approximate numerically
the solution of the fractional diffusion problem on a general setting of compact
metric measure spaces.
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