Publication date: February 14, 2017

UNIFORM SPACES AND THE NEWTONIAN STRUCTURE OF (BIG)DATA AFFINITY KERNELS

HUGO AIMAR AND IVANA GÓMEZ

ABSTRACT. Let X be a (data) set. Let K(x,y) > 0 be a measure of the affinity between the data points x and y. We prove that K has the structure of a Newtonian potential $K(x,y) = \varphi(d(x,y))$ with φ decreasing and d a quasi-metric on X under two mild conditions on K. The first is that the affinity of each x to itself is infinite and that for $x \neq y$ the affinity is positive and finite. The second is a quantitative transitivity; if the affinity between x and y is larger than $\lambda > 0$ and the affinity of y and z is also larger than λ , then the affinity between x and z is larger than $\chi(\lambda)$. The function v is concave, increasing, continuous from \mathbb{R}^+ onto \mathbb{R}^+ with $\chi(\lambda) < \lambda$ for every $\lambda > 0$.