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REGULARITY OF MAXIMAL FUNCTIONS ASSOCIATED TO A
CRITICAL RADIUS FUNCTION

B. BONGIOANNI, A. CABRAL AND E. HARBOURE

ABSTRACT. This work deals with boundedness on BMO and Lipschitz type
spaces of maximal operators appearing in the context of a critical radius func-
tion.

1. INTRODUCTION AND PRELIMINARIES

In this work we deal with the boundedness of some maximal operators acting on
BMO and Lipschitz type spaces that comes from the localized analysis considering
a critical radius function p, i.e. a function that satisfies

1 o= yl\ ™ o=yl \ o
1 c,px(1+ > < ply Scpx<1+ > )

for all z,y € R? (see [5] and [1]).

This analysis appears in the context of the Schrédinger operator £L = —A +V
in R%, d > 3 (see for example [14], [7] and references therein).

For z € R, a ball of the form B(z, p(x)) is called critical and a ball B(z,r) with
r < p(x) will be called sub-critical. We denote by B, the family of all sub-critical
balls.

One of the operators we are interested in is the localized maximal operator M,
defined for f € L{ _ as

loc

M) = swp [ 11l
r€EBEB, |B| B

In [4] the authors prove that M, is boundend on LP(w) for 1 < p < co where w

belongs to a suitable class larger than classical A, Mukenhoupt weights. In this

work we deal with the boundedness of M, in a weighted BMO type space that

appears in [§] for w = 1, and in [2] with weighted versions.

We also deal with some type of maximal operator of a family of operators pre-
sented in Section 5] that is a model to deal with semi-groups appearing in the theory
related to the Schrédinger operator £. Some results concerning this operator in a
more general context can be found in [I5] and [16].

In the rest of this section we present some facts about the critical radius function.
Section [2]is devoted to present the classes of weights involved in this work and some
properties of them that will be useful. In Section[3we state the type of spaces where
we are interested in study the behavior of the operators and we prove some results
about them in order to simplify the treatment of boundedness in the main results
and we hope it will aim in other works that uses techniques of this type. In Section[]
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and Section [f] we state and prove the main results of this work finding the behavior
of maximal operators we have already talked about, and finally we present some
applications to the context of the Schrodinger operator in Section [6]

Remark 1. Inequality implies that if 0 > 0 and z,y € 0@, where Q@ is a critical
ball, then p(z) ~ p(y), with a constant that depends on . More precisely, from
(1) and the fact that both belong to @, we have

(2) p(x) < cop(y),

N212N,
where ¢, = ci(l +o0) RoTT , and ¢, is the constant appearing in . If we change
the role of x and y we obtain p(z) ~ p(y).

As a consequence of (1], we have the following result that can be found in [9]
presenting a useful covering of R? by critical balls.

Proposition 1. There exists a sequence of points x;, j > 1, in R?, so that the
family Q; = B(zj, p(z;)), j > 1, satisfies

i) U;Q; = R%.

it) For every o > 1 there exist constants C' and Ny such that, Zj X0, < ColNt .

Given ball B we shall also need a particular covering by critical balls with centers
inside B as the following lemma shows.

Lemma 1. Let B = B(xg,r) with zy € R? and r > p(xo). There exists a set
of points {z;}., C B such that B C UY, B(z;, p(x;)) and Zf\]:1 XB(zsp(xi)) < C
where C' depends only on the constants in ,

Proof. Consider the family of sets

F={SC B: B(z,vp(x))NB(y,vp(y)) =0, Va,yec S, z #y}

with a constant v < 1/(cf + 1) where ¢; is the constant in (2). It is clear that
F # () since {xo} € F. Observe that if C be a chain in F endowed with the order
of inclusion, then V. = UgeeS is an upper bound of C. Therefore, there exists a
maximal element Spay in F. The set Spax must be finite. In fact, due to ,

—No
p(z) > eyt (1 + P(Tx@> plxg) = o > 0,

d
for all x € B, and thus there is no more than N balls in Sy, with N > (r:gfo) .

Denote @1, 22, . . ., zy the elements of Sp,ax. We shall see that B C Uf\LlB(xi7 p(x;))
and the overlapping of the balls B(z;, p(x;)), i = 1,..., N, is finite.

Suppose there exists y € B such that y ¢ UY | B(z;, p(x;)), which means |y —
x| > pla;), i = 1,...,N. Now see that B(y,vp(y)) N B(x;,vp(x;)) is empty. In
fact, suppose 2z € B(y, vp(y)) N B(wi, yp(xi)), then |y —xi| < |y —z[ + [z — x| <
Y(p(y) + p(xi)) < y(c? + 1)p(z;) which is a contradiction by the choice of 7. So
SmaxU{y} belongs to F and this means the contradiction that Sy, is not a maximal
element of F.

Now we see that the overlapping {B(z;, p(x;))}¥, is finite and depends only on
the contants in .
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Suppose that m is such that N, B(z;, p(z;)) # 0 for some points z; € S with

NZ+2N,
S e F. Since &p(x1) < p(z;) < Cp(z1), i =1,...,m, with C = 22 R+t (see
inequality (2))) we have

U, Bla, vp(es))  Bla1,30p(x1)).
Now we use the fact that the balls {B(x;,yp(z;))}, are disjoints to conclude

m [vp(gl)]d < i |B(ai, 1p(a:))]

= [ ULy B(zi,vp(z:))] < |B(x1,3Cp(x1))|
= [3Cp(z1))",

d~2d
thus m < 32¢-. [
v

2. WEIGHTS

Following [4], for 1 < p < oo, we say that a weight w belongs to the class Ag*l"c
if there exists a constant C' such that

o () S

for every ball B = B(x,r) with € R? and r < p(z).

In the case p = 1 we define the class A?'°° as those weights w satisfying

(4) w(B) supw~ < C|B),
B

for every ball B = B(z,r) with 2 € R? and r < p(x), for some constat C' indepen-
dent of B. We denote AL:1°¢ = UpzlAg’loc.

In the rest of this section we will state and prove some facts about weights in
the classes defined above that will be useful in what follows and they are of interest
on itself.

Proposition 2 (see Corollary 1 in []). If 1 < p < 0o and ¢ > 1, then Ag’l"c =
Acp,loc.
P

Lemma 2. Ifw € Az’loc and B = B(x,r), withp > 1, x € R? and r < cp(z) for
some constant ¢ > 1, then there exists a constant C such that for every measurable
subset E C B, it holds

5) wm) < cwm) (1)

Proof. In the case p = 1, since w € Af’loc = Aip’loc (see Proposition and F C B,
we have for some constant C,
|B|
B

For the case p > 1, using the condition w &€ Afj”loc and Holder’s inequality we
get for some constant C,

w(B) < C|B| inf w(x) < C|B] inf w(z) < Cru(E)

C|BJP 1BI\"
w(B) < [w=1/ (=1 (B)]p—1 < Cw(E) <|E|> )
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O
Remark 2. The constant C' in is the constant appearing in (or when
p = 1) for the critical radius function cp instead of p.

Given 6 > 0 and p > 1 we introduce the class A§>9 as those weights w such that

o () s amle )

for every ball B = B(x,r). For p = 1 we define Af’e as the set of weights w such
that

6
r
7 /wg C|B (1—1—) inf w.
(7) : Bl o))
holds for all balls B = B(z,7). We denote Af = U@ZOAgﬂ.

Remark 3. It follows easily from their definitions that w € Ag’e implies w € AZ’IOC,

for every 6 > 0.

Lemma 3. Let w € Az’e, with p>1,0 >0, x € R? and r < R. Then there exits
a constant C such that

R\? R \"
w(B(z, R)) < Cw(B(x,r <—) (1—1—) .
(B(, R) < Cu(Blzn) (= e
Proof. The proof follows the same lines of Lemma [2] with the corresponding modi-

fications.
O

3. WEIGHTED BMO TYPE SPACES

loc

that f belongs to the space BMOg (w) if

Let 8 > 0, a weight w, f € L{ _ and call fg = ﬁfB f. Following [2] we say

(8) / |f — fBl < Cw(B)|B|*/¢, forall B € B,,
B
and
(9) [ 111 <o) B foral B¢ B,
B

where B, is the family of sub-critical balls defined in the introduction.

Let us note that if is true for some ball B then holds for the same ball,
so it equivalent to ask () for all balls as was presented in [2].

We can give a norm in BM Og (w) as the less constant that satisfies and
(©) and we denote it by ”fHBMOE(w)' It is not difficult to see that BMOg(w) C
BMOP®(w) where BMOP®(w) is the Lipschitz space appearing in [I2] in the classical
context. On the other hand, if Q a fixed ball in R?, we call BMO?2 (w) the space
of locally integrable functions on @ that satisfy condition for all ball B C Q.
From its definition, it is easy to see that

BMO#(w) ¢ BMO®(w) ¢ BMOJ(w)
and

(10) ”-f”BMog(w) < ”f”BMOB(w) < 2Hf||BMo§(w)'
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Proposition 3. If w € A%°° and 8 > 0 then BMOg(w) = BMijp(w) for all

v > 0, with equivalent norms.

Proof. If v > 0, let us observe that vp is also a critical radius function.

Without loss of generality, we may suppose v > 1 (elsewhere, we can start with
vp and then we multiply by 1/y > 1).

Let us start with the inclusion BMO?(w) C BMOﬁfp(w). Give f € BMO?(U)),
we know f € BMO(w) and also from we have

£l Baros (wy < 2Hf||BMo,fj(w)-
In particular,
! d
i 1 151 < 2 s IBP, tor al BE B,

On the other hand, since B, C B,,, if B ¢ B,, then B ¢ B, and therefore,

1
— Bld
w(B)/BLf'S ||fHBMo§(w) |B| o
Thus, f € BMOZ,(w) and

Hf”BMoﬁjp(w) < 2Hf||BMof(w)'
Now, we will see the inclusion BMOF (w) € BMOS(w). Let f € BMOS (w).
From the fact that B, C B,, it follows

1
57 |1 = 151 < WFllpasos, o 114 for il BB,

Therefore, it last to see

1
i [ 1)1d < lasron, iy 1BI7, toral B ¢ 5,

If B = B(z,r) ¢ B,, there is nothing to prove. On the other hand, if B € B,,
and B ¢ B,, we have p(z) < r < yp(x). Since w € A%1°°, it must exists p > 1 such
that w € AZ’;’IOC. Therefore, from Lemma [2| we get for some constant C,

L[ w(Bap) 1 S
o) [, @ < TEI w(B(mp(x)))/B@,w(m))'f( I

|B(z,vp(z))
< CT||fHBMo§*p(w)|B(377’YP(33))

d
- C(|B<x,w<x>>|>p+ﬂ/
- |B|
< OV £l gaso8, | BIP7,
and the proof is finished. ([l

|B/d

1l pasos, oy BI

Proposition 4. Let w € Ag’loc, for some 1 <p<ooand f € L} . If

loc*
1
(11) A = sup / |f] < oo,
z€R4 w(B('Ia p(x))|B(;v, P($)|ﬁ/d B(xz,p(x))

then there exists a constant C such that

T
sup |f| < CA.
z€RL r>p(x) w(B(x,r))|B(x,7‘)|B/d B(z,r)
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Proof. Suppose holds and consider a ball B = B(z,r), x € R? and r > p(x).
In the case that there exists y € B such that p(y) > 2r then B C B(y, p(y))-
Therefore, by Lemma

1
w(B)|BJF/A /B 7

1Bty !
5( B ) w(B(y,p(y)))lB(y,p(y))ﬁ/d/B<y,p(y)>|f|

)
Since = € B(y, p(y)) then p(y) ~ p(x), and thus the last quantity is constant.
Suppose now that for all y € B, p(y) < 2r. From Lemma there exist N balls

B; = B(zi,p(xi)), i =1,...,N such that B C UY;B; and Zf\;1 XB(zipa:)) < C
where N and C' depends only on the constants in and the dimension d. Now
for each i = 1,..., N consider the ball P; = B(z;, p(x;)/4), with z; = 4(;(f;)i| (z —
x;) + x;, that satisfies P; C BN B; and |B;|/| P;| = 4%.

Therefore,

N

L1023 [ 10 < A 0B = 43 w(e) 2B o
e e R 4 Cw(p)
N

i=1

IN

ACH 8 3 w(R)|BIF < CIBIFFw(UY,P) < CIBI/w(B),
i=1
where C'is the constant of Lemma[2]and we also have used the bounded overlapping

property of the balls B; (see Lemma [1]).
[l

Following the previous proof, Corollary 1 in [2] may be improved. Actually,
instead of w € Az’loc we only need to ask a doubling condition for the weight w on
sub-critical balls.

In [3] it was proved the followig result for w in the Muckenhoupt class A4,. Here,
we shall prove an extention of that for w € Ag’loc.

Lemma 4. Let 0 < <1 we€e Agvl"c, 1<s<p and f € BMOg(w). Then,

1/s
(12) (L) < w@ 18P0 o
for every ball B = B(x,r) with r > p(z), and

1/s
(13) ([ 1= faluw=) " S wlB) 1811l paso
for every ball B = B(x,r) with r < p(x).

Proof. First, we will prove that holds. Let us consider the covering {Qx}
of critical balls given by Proposition [l and a ball B = B(xz,r) with r < p(z).
Then, there exists Q such that @ € Qp = B(zg,p(zk)), and by we have
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B C Qi = B(xy,Cp(xy)) for a constant C' independent of z and r. If we have a
cube ) and we call BMOg’S(w) to the space of functions f such that

1 1 1/s
14 )8 - — Sqpl—s
) fllasiosec = 0 s gy 1= folw ) <o

and BMO”+*(w) to the space of functions when the supremum is considred
for all balls B C R?, according to [3], it follows BMO®*(w) = BMO®(w) with
171 Baros . w)y = |1 £ Baros (w) and also BMOP*(w) C BMOg’S(w) with

Hf||BMog=a‘(w) < 1 fll Brmos = (w)-

Therefore, since B C Qk, we get
1 1 s,,1—s e <
B2 \w(B) /, |f — fB|"w < | fllBmossw) S I fllBaros (w)s

and thus is a consequence of inequality .
From Proposition it is enough to check over a critical ball B = B(z, p(z))
with € R. Observe that

(f Iflsw”)l/s <(/ If—fglswl‘s)l/s Ffl (0= 3) "

The first term of the right side is bounded following the same argument as before.
For the second term, observe that w!=* € A2!°¢, since w € A2'°¢ and p < s'. Then

Ve Bl
(=B 1551 S iy 31 = e
w(B) =

< wl/s’(B)‘B!B/dHf”BMOE(uo

= BB f | prsos -

4. THE LOCALIZED MAXIMAL OPERATOR ASSOCIATED TO p

In [4] (see Theorem 1 therein) the behavior of M, is studied, and it is proved
that M, is bounded on weighted Lebesgue spaces for localized weights, as is stated
in the following theorem.

Proposition 5. The operator M, is bounded on LP(w), 1 < p < oo, for w € Ab'oe,
and it is of weak type (1,1) for w € Afli,loc.

Now we present one of the main results of this work that tell us about the
behavior of M, in the extreme BMO,(w).

Theorem 1. Let w € AP'°°. There exists a constant C such that

M, fllBro,w) < ClfllBao, w)
for every f € BMO,(w).
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Proof. Let f € BMO,(w). We start proving condition (8) for M,f. For B € B,,
with B = B(zo,r), as it is well known it shall be enough to see

1
5 . 1Mof@) = cld < Clfnsso o
for some constant ¢ that depends only on f and B. Before start, observe that if
z € B is given, and P is a ball such that = € P and P € B,, it follows from
~ N

that P C B = B(zg,cop(v0)), with ¢co = 1 + 6,2,2N°+1+N031. Therefore, for # € B,
we have

(15) M, f(z) = Mp(fxp)(x).

On the other hand, there exits a constant C' and a ball Qo = (yo,p(yg)) of
the covering glven by Proposition |1} l such that zg € Qp and B € Qy = CQy, with

C = 1+¢, 2N0+1co
Therefore for x € B,

Mpf(x) < MQOf(CC)a

where the maximal operator MQO is defined as

1
Mo, @)= s /B £l

rEBC

Thus, for any constant c,
1 1
m /B | M, f(z) — c|dz < m/}g |M, f(x) — MQOf(x)|dac
1
+M/B|Méof(x) —cde=IT+11I.

Since for every z € B we have

M, (@) < Mg, f(x) < M, f () + M, f(2),

where
~ 1
W,f@) = swn o [ 1) dy.
z€EPCQo P
P¢B,
then
1 -
_ M, f(z)dzx

It is not difficult to deduce from (1)) that if P = B(zp,rp), such that P C QO
and P & B,, then rp =~ p(yo). In fact rp < Cp(yo) and also, rp > p(xp) and

p(zp) =~ plyo) (since zp € Qo = B(yo, Cp(yo))). Therefore, for every z € B we
obtain

w(Go)
C~ )| d C w) TR
/ Dy < Ol oo,
Thus
B| w(O)
16 I<cC ) 0
(16) < O lowso,0 55
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Asw e A’l”loc, from Lemma [2{ and the fact B C Q, we have

(a7) w(Qo) = () Blu(s)
With and we can conclude that I < [|fl|saro, (w)-

In order to deal with 17, we will use the local boundedness of MQO fon BMO(QO),
a result that appears in [6] (see Theorem 2.3). Since f € BMO(w) we have
Mgy, f < oo almost everywhere. On the other hand, since w € AL from Lemma
Alép,loc

it follows w € , and thus there exists a constant C' depending on w such that

w(B) < C|B| i%fw,

whenever B = B(z,r) with r < Cp(x). It is clear then that w € A;(Qo). Therefore,
if we choose ¢ = (Mé20 f) B, by using Theorem 2.3 in [6] applied to the cube Qo, we
obtain I'T < C|[fllprmog, (w) < CllflBro, (w)-

Now we are going to prove @[) for M, f. From Proposition {4} it is enough to
check the condition over a critical ball By = B(zg, p(z)) with z¢ € R.

Let, f = fi + f2 where f; = fxp; with Bj = B(zo, ap(ro)) and a = 22N00F2)+2.

We first consider M, f;. By Holder’s inequality

1

T oy M 012 = s |, W) )

(1 1/2
<(za /. M, )P ) i)

Since w € A2'°° < A5™°° it follows w™! € A5'°°. From Theorem 1 in [4], we
know that M, is bounded on L?(v) with v = w™!. Therefore,

1

1/2
s [ @l 5 (o [ e @)

) 1/2
= <w<BO) /B AP (@) d:v) -

Since | Bg| = a?|By|, by Lemmawe have w(Bg) < Cw(By) and then

1/2
“’(}%)/B |M, f1(z)| dz < (@ /B* ()P () dar) '

In this way, considering that Bj ¢ B, and Lemma it follows that the left hand
side of is bounded by a constant times || f|| 5aro, (w)-

Now, for € By we will deal with M, fo(x). It follows from the definition of f>
that it is enough to take the supremum of the averages over those balls B € B,
such that x € B and BN (B§)® # 0. Let B = B(xp,rp) one of those balls.
From , it follows easily that p(zg) ~ p(x) ~ p(xp). More precisely, we have
p(xp) < 22Noc? p(w).

Then,

[0 — 5] < a0 — 2] + le — | < plao) + 7 < pleo) + pla) < (22V0e2 + Dp(ao)
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On the other hand, since B N (Bg)¢ # ), there exists a point z such that z € B
and z ¢ B, then

rp > |2 — 2pl > |2 — 3] — 7o — o8] > ap(o) — (2% + 1)p(we) = plao)
If we denote Bg* = 2B, it is clear that Bg C Bg*. Moreover, B C B§*. In fact,
given y € B, it follows
ly — zo| < |y — x5l + |zB — 20
< pzp)+ (22N°C§ +1)p(o)
< (22 + 1)p(ao)
< 2ap(xo).
Therefore, for all x € By we have
1
Mofal) = s [ 1) dy
1Bl /5

zeBeB,
BN(Bj) 0

(19) < [ Yrw)ay

~ 185"l B

)w(Ba‘*)

1B

From the bound of M, f2(z), for every « € By given by and Lemma [2| we
get

< ClfllBrmo,w

1 |Bol w(Bg")

— [ M dr < C . <C N
w(By) /Bo| ﬂf2($)| T = Hf”BMOp( )w(Bo) |BS*| ||f||BMOp( )

and this complete the proof.

5. THE MAXIMAL OPERATOR OF A FAMILY OF OPERATORS

Let {T}}i~0 a family of bounded integral operators on L?(R?) with integrable
kernels {T;(z,y)}+~0- Suppose also that there exist constants C,v, v, d, o, 0’ y €
such that for all ¢t > 0 and =z, 7,y € R? with |x — 20| < t/2 it holds

(20) el £ O (11 )7(”(” )

thtle—yl* \t+|z—yl) \t+p()

(21)

=m0l = i () (55 ()

and

(22) - T,(1)(@)] < c(%) |

For that family of operators we define the maximal operator T = sup,~. |1
We present the following technical lemmas that will be used in the proof of
Theorem [l
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Lemma 5. Let B = B(xg,r) with r < p(xg) and f € BMOg(w) with w € A8Y,
where >0, p>1 and § > 0. Then

w(B)| 574 (p(z) )"V
|fB\<2nCHf||BMof’(w) 15| |B|/ ; ,

where n = p(d+20) + S+ 1 and C is the constant appearing in (@

Proof. Let f € BMOS(w) and jo € N such that 20~ 'r < p(z) < 277, Then

jo—1
5l < o7 [ 17— Il + > Vo = ol + ot
1 ”’1 9d 9d
< — — /Bl + : +
B|L|f fB| z::lijl 27‘B‘f f2JBl |2]UB| 230B|f|

Jjo—1

— Z 2]B|/ |f f233| + |2]OB| 2joB|f|

d j d
<2 ||f||BMoﬂ<w>Z 5 B| 28|,

where in the last inequality we have used (8) and (9)) since 270=1r < p(z) < 2907
From Lemma [3] we get

Jo
F5] <2520 fll g p10 0y 0(B)| B/ AE Y 294
=0

< 2d+2p9+12j0(d(p_1)+6)CHf”BMoﬂ w(B)|B|B/d_1

(w)

( ) ( ) d(p—1)+8
< PUROSC fl 0 ||B|ﬁ/d< ) |
B r

(]

Lemma 6. Let 2 € R, 0 <r < Rand f € BMOg(w) with w € Az’(’, where p > 1,
B8>0and 0 >0. Then

5/d R pd+pB R pb
— <C o B B — 14+ —

[ =Tstenl S Cllslmogmu(Be B P (F) (1455 )
where C' is the constant appearing in @

Proof. Let jo € N such that 2=l < R < 2%, For simplicity, let us denote by
B, = B(z,t) for any t > 0.
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/ 1f = 1o
jo—1

< /B | = ol +IBRI D 1 fBryss = fBpjases | + 1BrlfB, 0 — fB.
R j=0

Jo—1

< / |f = foal + D 2d<j“>/ = FBm ] + W/ | = I8,
Br j=0 Bpyai By
j071 . .
<2 Z 2d(]+1)/ |f = fBpu | + 2]Dd/ |f = Bl
j=0 Bry2i Br
Jo—1 _
<20/l oz D 29V Bryail? w(Bryas)
j=0

+ 2j0d||fHBMofj(w) ‘Br|'8/dw(Br)~

Again, applying Lemma [3] we obtain

/BR|ffBT|

Jo—1 i\ P P
. R/2I R/
< 200f paropuy D 279V BRI/ (B,) () (1 e )

=0

d
R
+ 24 () Wssroh BB,

(R dp+8 R\
S CHf”BMOf(w)w(BTNBT'ﬁ/ (7,) (1 + )

Jo
< | 2(d+1) Z 9—ild(p—1)+4] 4 od
=0

dp+p5 po
R R
S Ol oo BB (F) 7 (145

Now we state the main result of this section.

Theorem 2. Let w € Agvg, B > 0 and {T:}i>0 a family of operators satisfying
, and with 0,7,y > f+pd+d(p—1), o' > pd and 53‘_56 >d(p—1)+p0.

Then, there exists a constant C' such that

||T*f||BMOE(w) < C”fHBMOE(wy

for every f € BMOE(w).
Proof. Let f € BMOff(w). We start proving that condition is satisfied by T* f.

To this end, we shall use the hypothesis on the exponents o > 8+ pf + d(p — 1)
and v > B8+ pf+d(p+1).
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If By = B(xo, p(zg)) then

/ sup T, f(2)|dz < / sup [Tof(z)ldz + / sup [T, f(x) — TOf (a)|dz
B B B,

o t>0 o t>p(z) o0 t<p(z)

+ / sup |T} f(x)|dx = T+ II 4 III,
B

o t<p(z)

where, for z € R,
79f(0) = | Ty, 1) f ) dy.
|z—y|<p(z)

Let us start with III. If z € By and 0 < t < p(z), then

Ty, o)1 ()] dy + / T )l (v)] dy.

t<|z—y|<p(z)

(23) [TOf(x) < /

|z—y|<t
From and the definition of M, it follows easily that

[ eIl gl 1] < M5

lz—y|<t

For the second term of (23), if ko € Ny is such that 2¥t < p(z) < 2+t and we
call By, = B(x,2Ft), we get

/ Ty, )11 (v)] dy
t<|z—y|<p(z)

<p / If(y)dl+ dy
t<|z—y|<p(x) |l‘ - y| v

ko—1

/(W)
S‘t’y Z/B 5|d+'y dy

k=0 k+1\Bk ‘.%' -

n ﬂ/ \f(y)dl+ J
2kot<|z—y|<p(z) |x—y| v
27k

NZ (W) dy

p(x)) oy /
+ y)l dy
< 2kot |B z p | (z p(m))

<M, f(x Zz k,

In this way, we have sup,.,,) \T f(z)| uniformly bounded in By by a constant
times M, f(z). Since w € A£? by Remark (3 I also belongs to A%'°°. Now, if 1 <
s < p/, it follows w € A%, o’ and then the operator M, is bounded on LP(w!=*)
(see Proposition [5 ' Therefore, if By = ¢yBo con ¢y como en , from Holder’s
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inequality, Lemma [4 and Lemma [2| we get

IIT < M,f(x) de = M,(fxp,)(z) dx

Bo Bo
1/s ,
s( My (g, ) w dx) w(Bo)"/*
Bo

w(BONBOlﬂ/dHf”BMOf(w)
w(Bo)|BO|’8/dHf||BMo§(w)'

N N

Now, we deal with I. Consider x € By and t > p(z). Then,

T, y)1f ()] dy + / Ty )| ()] dy

lz—y|>t

T, f ()] < /

lz—y|<t

Bearing in mind that B(z,t) ¢ B, and B(x, p(z)) C B(xg, c1p(zo)) (with ¢; =
N,
1+¢p2 NoiT ), from (20), Lemma , we have

[ malisw

(42 2 [ swld

p(x)\ 7 w(B(x,t))
t > |B(Jj’t)| |B(xat)|ﬁ/d||fHB]\/jog(w)

A

t

21\ o F—p—d(p—1)
< (%2) w(B(e, o)) o) 310
w(B(xo,c1p(x0))) p(x)ﬁid”fHBMofj(w)a

where in the last inequality we have used o > 8+ pf + d(p — 1).
Now, from Lemma [2] and the fact that p(z) ~ p(zg) (see Remark [I)), we obtain
that the last expression is bounded by w(Bo)|B0\5/d71||f||BMOﬁ(w).
P

On the other hand, if we denote By, = B(z,2"t), then By, ¢ B,, for any k € N.
Hence, from and the definition of BM Og (w) we obtain

[ el

= (p(tx))/| EET <x:y|>v 7] dy

(24) (") 2 H

E>1 T—y|~2kt |:17 -

)\’ —ky
(%) ST L e

k>1

p(x)\7 _ _
Sl maros o) (”) S 2By By

t
k>1
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Moreover, taking into account that p(xg) < ¢,2V0p(z) and 2%t > p(x) follows
that By C B(wo, c22Ft) with co =1+ 2Noc Then, applying Lemma we get

(1) S o

k>1

S <p(t$)) ’ Z 27" w(B(xo, 22%1))| By /47!

k>1

o e () e

o 0—d 1

o (plag)\ 7" o= B B—d N g —kly—B—po—d(p—1)]

< (7 w(Bo)plan)” > 2
E>1

( 0) pld
By

where in the last inequality we have use the hypothesis o > 5+ pf + d(p — 1) and
v >+ pf + d(p — 1). Therefore, from and we get

w(Bo)
/| e IS0 45 S s o g Bl

and thus we have

15[ s 1700 o S 1 o (Bl Bl

o t>p(x)
In order to finish this part, let us see II. Observe that
sup [Tf(a) ~ T0f(z)| < swp [ T3 ) | £0)] .
lz—y|>p(x)

t<p(x) t<p(x)

If t < p(x) and By, = B(z,28p(x)), k € N, then from

/ T2, 9)|1£ (4)| d </ ! ( t )”f( |
lz—y|>p(x) " P~ le—y|>p(z) [T =yl \ |z —y] Yyl ay

1 p(z) >”
S d
< /IH:W p— <|x— ;) Wy

k>1
S f)l dy
; |Bk|
,S Hf”BMog(w) Z2ikvw(ék)|ék‘5/dil'
E>1

From here, we can proceed as in and , replacing By, and ¢ by Bj, and p(x),
respectively. Therefore,

w(BO) d
Ty, DIF O dy S 1) garo? | Bo|*/?,
/z yI>p() BMOp(w) | By

whenever v > 8+ pf + d(p — 1).
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Thus

= [ s (@) = TEA@)] do S Lo o) Bol/,
o t<p(=)

and this finish the proof that 7™ f satisfies and then condition (9) (see Propo-

sition [4)).

To estimate the oscillation of T* f we consider a ball B = B(xzg,r) with 0 < r <
p(xo). We decompose f = fi+ fa+ f3, where fi = (f— fg)xa2B, f2 = (f —fB)X@2B)-
and f3 = fp to deal with each one separately.

We start with f1. In this case (it is enough) we will estimate the average
sup;sq|T;f1]- For x € B, we have

sup Ty f1(z)| < sup |T;fi(x)| + sup [Ti fr(z)]-
t>0 o<t<r t>r

If t < r, since f is supported on 2B and considering , it follows

Tofi(2)] < / 1Ty, )l ()] dy
|zo—y|<2r
< / Tz, )11 () dy
|z—y|<3r
<L e ﬂ/ — h@)ldy
td lr—y|<t t<|z—y|<3r |JI - y|d+7

Jo
q 1
<M, fi(z) + 2797 — / f1(y)| dy,
ZICED Ny ¥

where p'(z) = 2Noc,p(x) (see inequality (1)) and jo € N is such that 201t <
3r < 2Jo¢. In this way, since z € B, we have 2/t < 6p(zo) < 62™oc,p(z), for all
0 < j < jo. Now, if we denote p(x) = 62"oc,p(z), the second term is bounded by
a constant times M;fi(z). From the fact that M, < M; and applying Holder’s
inequality with exponent s > 1, we obtain

1/s
/sup|th1(x)\dx§/ M;fi(z) de < (/ Mﬁfl(x)swlfs dm) w(B)l/S/.
B B B

t<r

As Af C Ag’loc, implies w!™?" € AZ}IOC = Ag;loc, setting s = p’ in the last
expression and using the Proposition |5| we have

t<r

) ) 1/p’
[ sw sl 5 ( [ n@r et dx) w(B)”
B 2B
, , 1/p’
(/ () — fal w0 dx) w(B)”
2B
) ) 1/p’
5(/ (@) = fapl w7 dx> w(B)VP
2B

, 1/p’
\fos — fol ( [ o dx> w(B)”.
2B
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For the first term we use the Lemma [ (having in mind that 2B € B; and
BMOS (w) = BMOg(w)) and we obtain

1/p’
(27) f(x) — fop|Pw' ™" da w(B)Y? S| £l Baor w) w(B) |BIP4.
2B s

On the other hand, from the fact that | fop — fg| is bounded by a constant times
1l 5aro? (uy w(2B) |2B|#/4=1 and the condition Abloc we have

(25)
. 1/p' .,
o= fol ([0 de) (B £ Wlssop wl2B) 2B 25
2 P
S HfHBMof;(w) w(2B) [2B]7/

S Hf||BMo§(w) w(B) |B|B/d>

where in the last inequality we have use [L0] and Lemma
Suppose now ¢ > r. From the definition of the space BMOg(w), using , and
Lemma 2] it follows

T, 1 ()] < / 1T ()| f1 ()] dy

|lzo—y|<2r

1
<3 |f1(y)| dy
1% JaB

1

(29) i [ 1@ = fldy
2B

A

A

1
ﬁ||f||BMo§(w)w(zB)|QB|ﬁ/d

1
S =il fll B )W
|B| " 'BMOS (w)

(B)|B|?/.
From (26), (27), and we conclude

[ sup T @) e 5 1 maroguy w(B) B
B t>0

To deal with the term with f, if cg = T* fa(xq), then

(30) / T o (2) — T* o (z0)|dz g/ sup [Ty fo(z) — T fo(w0)|da-.
B B t>0
Now, for z € B and t > 0 we have
(31)  |Tfale) — Tufalzo)| < / Tz, ) — To(zo,9) | fo(w)] dy.
|zo—y|>2r

Suppose first that » < t/2. In this case, we have |z — x| < t/2. We now divide
the integral in two parts |z —y| < t and |z — y| > t. When |z —y| < t, we
denote by k; to the first integer such that 2¥1~1r < 2t < 2¥1r. Having in mind
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condition (21)), and p(x) ~ p(zo) we obtain

S 1T0) = T )| o0

lz—y|<t
t O\ i\l
() O af, ewia
t =0 e 1 &
(o) @) e, e

Applying Lemma @ since 2¥17 ~ t we have

k1 k1 2k7“ po
Z /QkB |f(y) = fBldy < ||f||BMo§(w)w(B)7"6 Z 2k(pd+F) (1 + )
k=2

k=2 (o)

2]@17,, po ki
5 ”f”BMOf(w)w(B)rﬁ (]_ + > Z 2k(pd+ﬁ)

plwo) ) o
t po t pd+p3
Therefore,
(32)
S i) = TuCaos )1 ) dy
lz—y|<t
t N7\ s—d-1)-8 w(B)
< r 5
~ <1+p(x0)> (3) B " W lsaoz
w(B)

< B
~ |B| r Hf”BMOE(u))’

whenever ¢’ > pf and § > d(p — 1) + 5.
In the part | — y| > ¢, we use again estimate to get

S T ) = Tieo, ) )] dy

l[z—y|>t
£ N7 NG
< <1+ ) (f) ﬂ/ IfQ(ygl dy
p(xo) 13 lz—y|>t ‘LU - y| K

t BTG B ,
S(itoms) G EXzre [ i) - sl

E>1 B(I,th)
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Applying Lemma@with R = 2*t, the sum in the last expression can be bounded
by a constant times

o [ 2R\ P 2kt \
”f”BMof(w)w(B)rﬁ Z 9—k(d+~") () <1 + >

" o(o)

5[t pd+p t\" k(d+~'—pd—B—pb)
t v - Y —pd—p—p
S Il sarog uyw(B)r <) (”m )) 2

x
0 k>0

s P " pd+
S ||fHBMofj(w)w(B)rﬁ <1 * )) ( > 7

pxo r

whenever v/ > 8+ d(p — 1) + p#.
Coming back to it follows as before that

(34)

|mo—y|>2r |Tt($7y) - Tt(an y)||f2(y)| dy

lz—y|>t
—o’+pb 1y
t 7\ 0—d(p—1)=8 w(B)
(e ) B " Wlswozw

B
|B| r HfHBMog(w)

whenever ¢’ > pf and § > d(p — 1) + 5.

Let us see the case r > t/2. In this case, we estimate the difference by the sum
as follows

/I ) /1 [T (z,y) — Ti(xo,y)| f2(y) dy g/ Ty (x, )| | f2(y)| dy

|zo—y|>2r

+ / Ty (w0, )] folw)] dy
|zo—y|>2r
=A +B.

We only deal with A. The term B can be estimate analogously.
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Since in the domain of integration we have |xg — y| > 2r > ¢ and also |x — y| >
|zo —y| — | — xo| > r > t/2, using condition and Lemma [6] we obtain

(35)
/, LA

|lz—y|>r ‘x - y‘ v

7 _
< Sk /B F(w) ~ f5]dy

k=1 (z,2F7r)

1
S Y2 [ i) faldy

Td kzz:l 2k B

0

w(B) S —pd— 2t
< WB) 5 . 9—k(d+~y—pd—p) <1+ >

L [ ||BMop(w)]§ p(xo)

w(B) - —pd—p—
< Trﬂ||f||15'MO§(w)z:2 Y

k>1
w(B)

< B
R r ||f||BMO§(1_u)’

whenever v > 8+ d(p — 1) + pb.
Therefore, from , and , we obtain for z € B

w(B
sup [T fo(z) = Ty fa(wo)| S —T(‘T)TBHf”BMO/‘}

Hence, it follows
|17 hla) = Tl de S w(B)e? Flvsos

and this finishes the term with fs.

To deal with the term with f3, we shall find a bound for T*f3 = T*fg =
|fB| T*1. We will estimate the oscillation of T™ f5 over B subtracting the constant
cg = |fB[T"1(z0).

Observe that,

17 1a@) = T falao)| < Ufal [ sup Tid()  Tet o) dn,
B B >0
and
[14(2) = Tid(eo)| < [ [Tiy) = TuCoo )] dy.
R
As before, we consider separately the cases ¢t > 2r and ¢t < 2r. We start assuming

t > 2r and then |z — x| < t/2, that allows us to use condition (2I)).
We also divide the domain as before as

/ T (z,y) — Ti(wo, y)| dy S/ + / =C+D.
R4 lz—y|<t |lz—y|>t
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Thus condition (21)), implies

’

(i) (/=)

and also

+ —o’ 5 ' 5
D3 (1 + > (i) / 7,1_’_/(@ S (f> )
p(o) t) Jig—yi>e [z —y|4 t

whenever ¢’ > 0.
On the other hand, considering the inequality

(36) Te1(x) — Til(wo)| < [Til(x) — 1 + |Til(zo) —1l,
from condition , it is clear that

where we have used the fact that p(z) ~ p(x¢). The same estimate is valid for the
second term.
Therefore, we may bound a convex combination of the previous estimates to get

|Ti1(z) — Ty1(20)| < (;)(5(1—(1) (p(io)>m.

In this way, denoting a = §/(0 + €), we have ea = (1 — a).
Then, for all ¢t > 2r and € B we obtain

€a
r
(38) |T:1(z) — Til(xo)| < ( ) )
U ' p(xo)
In the case t < 2r, proceeding in the same way as in and follows
r €
39 Ti1(x) — Ti1(xg)| < .
(39) Ti1(0) - Titan) 5 (5 )

Having in mind that @ < 1 and r/p(z¢) < 1 we obtain from and that

sup Ti1(2) - T(an)| < ()

Finally, from Lemma [f] it follows

/ (T s () — T* fs(0)| < |5] / sup [T, 1(z) — Tyl (zo)| da
B B t>0

d(p—1)+p ea
Sl pasopro®)r? (222 (o)

r p(zo)

N ||f||BMolfj(u,)w(B)7ﬁ7

whenever eﬁ >dp—1)+ 5.
An this finishes the proof of the theorem.
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6. APPLICATIONS
In this section we consider a Schrédinger operator in R? with d > 3,
L=-A+YV,

where V' > 0, not identically zero, is a function that satisfies for ¢ > d/2, the reverse
Holder inequality

1 Ve ¢
(40 (/Vy"dy> <5 [ v
: 51 /5" 51 /5"
for every ball B C R%. The set of functions with the last property is usually denoted
by RH,.

For a given potential V' € RH,, with ¢ > d/2, as in [14], we consider the auxiliary
function p defined for € R? as

1
p(x)sup{r>0:rd_2/ VSI}.
B(z,r)

Under the above conditions on V' we have 0 < p(z) < co. Furthermore, according
to [14, Lemma 1.4], if V'€ RH, /5 the associated function p verifies .

Let k; be the kernel of e7**, t > 0, where {e7**};~¢ is called the heat semigroup
associated to £. There are known (see [I3] and [10]) the following estimates for k;.

Proposition 6. Let V € RH,, ¢ >d/2, N >0 and 0 < A < min {1,2 — g}. Then

there exist positive constants C, C and Cn such that for all t > 0 and x,y, xo € RY
with |x — zo| < V/t we have,

" —01/26—‘””51;'2 VLV -
. e v o (e
(42)
o) — ki (x |z — 20 g —d/ze—‘”;ﬁ'Q ﬁ i -
) o) <G (B2 ) ()
and
2 %72
(43) () = ()| < G2 e~ ¥ (1+p(ff)> ’

where k; denotes the kernel of e7tA, t > 0.

Theorem 3. Let V € RH, for some ¢ > d/2, e =2 — g, 0 < 0 < min{l,¢} and

w E Ag’g?. Ifl<p<l+4+5and0<p<k—dp—1), withk = efé, then there
exists a constant C' such that

”T*f”BMofj(w) < C”fHBMofj(w)a

for every f € BMOg(w).
Proof. Tt is enough to prove that the family {e‘t%}bo satisfies the hypothesis of

Theorem Let us start proving that from we can get . In fact, given
C > 0 and M > 0, there exists Cp; > 0 such that

lo—y|2 12 M t M
e oz <(C _— <4Mc _— .
= M(t2+x—yl2) = M<t+x—y|>
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Therefore, if we choose M > d/2, from with 2 instead of ¢, we have

ke (z,y) St (t+ |;_y|)2M <t£(j()x)>N

P ‘;I;l_y|d <t+ |;—y|)2Md (%)N’

which is with v =2M —d and 0 = N.

In the same way we can obtain from with v/ = 2M — d, ¢/ = N and
d= A

Now we will see that implies with e = 2 —d/q. It is known (see [I1] or
[10] for example), that k;2(1) =1 for every ¢ > 0, and thus

11— ke (1) (2)] < 1= ke (1)(2)] + |k (1) (2) — Kz (1) ()]
= [k2 (1) () — k= (1)(2))].
Therefore from we obtain

e (1)(a) = kia ()@ < [ s ) = R )|
' 42
5/ e <1+’)($)> dy
Rd t
pd 5
() LT
t+p(x) R
s ()
~\t+p(x)
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