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ON THE CALDERON-ZYGMUND STRUCTURE OF PETERMICHL’S KERNEL.
WEIGHTED INEQUALITIES

HUGO AIMAR AND IVANA GOMEZ

AssTrACT. We show that Petermichl’s dyadic operator # (S. Petermichl (2000), Dyadic shifts
and a logarithmic estimate for Hankel operators with matrix symbol) is a Calderén-Zygmund
type operator on an adequate metric normal space of homogeneous type. As a consequence of
a general result on spaces of homogeneous type, we get weighted boundedness of the maximal
operator P* of truncations of the singular integral. We show that dyadic A, weights are the good
weights for the maximal operator £* of the scale truncations of #.

1. INTRODUCTION

In [9], Stefanie Petermichl proves a remarkable identity that provides the Hilbert kernel
x%y in R as a mean value of dilations and translations of a basic kernel defined in terms of
dyadic families on R. The basic kernel for a fixed dyadic system D is described in terms of
Haar wavelets. Assume that D is the standard dyadic family on R, i.e. D = U;zD’ with
Dl = {I,{ : k € Z} and I/{ = [% ’%l) Let 27 be the standard Haar system built on the dyadic
intervals in 9. There is a natural bijection between .5 and ©. We shall use D as the index
set and we shall write A; to denote the function A;(x) = [I|7/* (X;-(x) — X;+(x)) where I” and
I are the respective left and right halves of 7, X is, as usual, the indicator function of E and
|E| denote the Lebesgue measure of the measurable set E. With the above notation, the basic
Petermichl’s operator on L*(R) is given by

Pr(x) = Z (fshp) (%) = hy+(x)), (1.1)

IeD

where, as usual, (f,h;) = fR JFO)h(y)dy. Hence, at least formally, the operator £ is defined by
the nonconvolution nonsymmetric kernel

P(x,y) = D )i (x) = hy- (1))

heD
= P'(x,y) + P (x,y);
with
Pr(6y) = D ) (x) = hys() (1.2)
IeD*
and D* = (Il e D : k > 0}.
Let us observe that for x > 0, y > 0 and x # y the series ).+ h;(Y)[-(x) — hy+(x)] is
absolute convergent. In fact

1
lhi )R- (x) = hys (X)] = — |hy-(x) = Ay (%)
1;):+ ' ' I IEZ)*,IZQI(x,y) \/m I '
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where /(x,y) is the smallest dyadic interval in R containing x and y.

The aim of this paper is twofold. First we show that #* (and ) the operator induced by
the kernel P* (resp. P~) is of Calder6n—Zygmund type in the normal space of homogeneous
type R* (resp. R™) with the dyadic ultrametric 6(x,y) = inf{|l| : x,y € IandI € D} and
Lebesgue measure. Second, by an application of the known weighted norm inequalities for
singular integrals in normal spaces of homogeneous type, we show that the operator P f(x) =
SUP| mez) | Zrenr 2<ieam (fs hr) (hi-(x) = hi=(x))| is bounded on LP(R*, wdx) if and only if w €
Aiy(RJr) when 1 < p < oo.

In §2{we prove that £* is of Calder6n—Zygmund in an adequate space of homogeneous type.
In Section[3| we give the characterization of the dyadic weights as those for which the maximal
operator of the scale truncations of " is bounded in L?(R*, wdx) for 1 < p < oo.

2. PETERMICHL’S OPERATOR AS A CALDERON—Z YGMUND OPERATOR

Following [8]], a linear and continuous operator 7 : Z(R") — 2'(R"), with Z and &’
the test functions and the distributions on R”, is a Calderén-Zygmund operator if there exists
K € L' (R*xR"\ A) where A is the diagonal of R" X R”" such that

loc

(1) there exists Cy > 0 with

IK(x,y)| < X%y,

lx — "’

(2) there exist C and y > 0 such that

, o — A ,
@) IK(x',y) — K(x, )| < CIW when 2 [x" — x| < |x - y[;
" =y

@) [K(x,y) - K(x,y)] < Cy

(3) T extends to L?>(R") as a continuous linear operator;
(4) for ¢ and ¥ € Z(R") with supp ¢ N suppy = O we have

o when 2|y’ — y| < |x - yI;

T = f fR KGOy

With a little effort the notions of Calderén-Zygmund operator and Calderén-Zygmund kernel
K (i.e. satisfying (1) and (2)) can be extended to normal metric spaces of homogeneous type.
Even when the formulation can be stated in quasi-metric spaces for our application it shall be
enough the following context. Let (X, d) be a metric space. If there exists a Borel measure y on
X such that for some constants 0 < @ < 8 < oo such that the inequalities ar < u(B(x,r)) < fBr
hold for every r > 0 and every x € X, we shall say that (X, d, u) is a normal space. As usual
B(x,r) ={y € X : d(x,y) < r}. In particular, (X, d, i) is a space of homogeneous type in the
sense of [4]], [6], [5], [2], and many problems of harmonic analysis find there a natural place to
be solved.

In this setting in [6] a fractional order inductive limit topology is given to the space of com-
pactly supported Lipschitz y functions (0 < y < 1). We shall still write ¥ = Z(X,d) to
denote this test functions space. And 2’ = 2’(X, d) its dual, the space of distributions. So, the
extension of the definition of Calderén-Zygmund operators to this setting becomes natural.
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Definition 1. Let (X, d, u) be a normal metric measure space such that continuous functions
are dense in L'(X, u). We say that a linear and continuous operator 7 : 9 — 2’ is Calderén-
Zygmund on (X, d, w) if there exists K € L}UC(X X X'\ A), where A is the diagonal in X X X, such
that

(1) there exists Cy > 0 with

Co
IK(x,y)| < . XFEY,
Y= ey
(i1) there exist C; > 0 and y > 0 such that
dx’', x)¥
@) IK(.) = K59 = Cr g when 24049 < ()
d(y,y')

({b) 1K (x,y") - K(x,y)| < C, e when 2d(y', y) < d(x,y);

(iii) T extends to L*(X, i) as a continuous linear operator;
(iv) for ¢ and ¥ € Z with d(supp ¢, supp ¢) > 0 we have

(To,y) = f fx y K(x, V() ()d(u X p)(x, y).

Our first result shows that £* and $~ are Calderén-Zygmund operators. In what follows we
shall keep using P for P* and P for P*.

Theorem 2. There exists a metric § on R* = {x : x > 0} such that (R*, 6, |"|) is a normal space

where §-continuous functions are dense in L'\(R*, dx) and P can be written, for x # y both in

R*, as

_ Q)
6(x,y)

where Q is bounded and 6-smooth. Moreover, P is a Calderon-Zygmund operator on (R, 6, |-|).

P(x,y) 2.1)

Proof. For x # y two points in R*, define 6(x,y) = inf{|l| : x,y € I € D}. Define also
0(x, x) = 0 for every x € R*. Itis easy to see that ¢ is an ultra-metric on R*. This means that the
triangle inequality improves to d(x,z) < sup{d(x,y), d(y, z)} for every x, y and z € R*. Notice
that |x — y| < d(x,y) but they are certainly not equivalent. Also, for x € R* and r > 0 given,
taking m € Z such that 27" < r < 27! we see that Bs(x,7) = {y € R* : 8(x,y) < r} = {y €
R* : 6(x,y) < 27"} = I,’:Zx), where k(x) is the only index k € N U {0} such that x € I;". Hence
the Lebesgue measure of Bs(x, r) is that of the interval I,’:Zx). Precisely, |Bs(x, r)| = 27™. So that
5 < |Bs(x, r)l < r, for every x € R" and every r > 0. In terms of our above definitions (R*, 6, |-|)
is a normal metric space. The integrability properties of powers of ¢ resemble completely
those, of the powers of x. In fact, for fixed x € R*, the function of y € R* given by 1/6%(x, y) is
integrable inside a 0-ball when « < 1. It is integrable outside a -ball when @ > 1. In particular,
1/6(x, y) is neither locally nor globally integrable on R*.

Notice now that real valued simple functions built on the dyadic intervals are continuous as
functions defined on (R*,9). In fact, for I € D we have that |X;(x) — X;(y)| equals zero for
x and y in [ or for x and y outside /. Assume that x € [ and y ¢ I, then d(x,y) > 2|I|. So
that |X;(x) — X;(y)| < 6(x,y)2|1])"" for every x and y € R*. In other words, for I € D, X is
Lipschitz with respect to § with constant (2 |/|)"'. Hence §-continuous functions are dense in
L'(R*, dx).

The operator P is actually defined as an operator in L*(R*, dx). For f € L>(R*, dx),

PFO) = > (fohn) (- (x) = Bys ()
1eD+
3
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= D F () = Y Fuhyy s (0.

1eD* 1eD*

Hence ||Pf||§ < 2 Y e Kfs hy? =2 ||f||§, which proves (iii) in Definition In particular,
if ¢ is a simple function built on the dyadic intervals, we see that Py € L*(R*,dx). So that
when ¢ is another simple function such that 6(supp ¢, supp ¢) > 0, the two variables function
F(x,y) = ¢(x)y(y) is simple in R* X R* and for some € > 0, supp F N {§ < &} = 0, we have
that, since only a finite subset of D" is actually involved,

‘[f (}jhmwmruy—mwwﬂwwmmw@dx
ROXRT A fepr

i[(f mmwwﬂmm
xeR* yeR*

= f = P (x)dx

= <PQ0’ l/’) .
Hence P(x,y) = 3 jcp+ hi(y)[h;-(x) — hy+(x)] is the kernel for $. Let us now show that P(x,y) =

Q(x.y)
o) for x # y. For J € D* define

Q,(x,y) = 0;(»)©3(x)
where

Ol = X, -XrO)
93(@ (Xj+(x) + X+~ (%) = (Xj—(x) + X+ (X)).

Let us denote with I(x, y) the smallest interval containing x and y, then we have

1
Py) = ) @) = he@l= V2 50 Q).
IeD* 1eD*,121(xy)
Since |I(x,y)| = d(x,y) and in the last series we are adding on all the dyadic ancestors of I(x, y),
including I(x, y) itself,

V2 Zoo 1 Q(x, y)
_! ! m s fd i
o(x,y) &= 2" 1 (%) o(x,y)

P(x,y) =
with 1" (x, y) the m-th ancestor of I(x, y) and

Q(x,y) = V2 27" Qg (4, ).
m=0
Hence (i) in Definition [1] holds with C,, = 2%/2.

Let us check (ii.a). Let x, y and X’ € R* be such that 6(x, x’) < 16(x,y). Let I(x,y) be
the smallest dyadic interval containing x and y. Then |I(x,y)| = d6(x,y). In a similar way
[I(x, x")| = 6(x,x’) and |I(x’, y)| = 6(x’,y). Since those three intervals are all dyadic and since
[I(x, x")| < % |1(x,y)|, we necessarily must have that x” belongs to the same half of I(x,y) as

x does. Hence I(x’,y) = I(x,y) and certainly also are the same all the ancestors 1" (x’,y) =
1™ (x,y). Now,

1 ) Qx',y)  Q(x,y)

— |P(X,y) — P(x,y)| = —

\le (x',y) = P(x, )| 500y Sty)
2 QL) ~ Qx y)l
B 6(x,y4)

1
o(x',y)  d6(x,y)

+mmwﬂ
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=1+1I
In order to estimate /, let us first explore the d-regularity of each €,. Let us prove that
(a) for fixed y € R* we have that [Q,(x’,y) — Q,(x,y)| < 26(x, x'); and
(b) for fixed x € R*, |Q;(x,y") — Q;(x,y)| < md(y V).
Let us check (a). The regularity in the second Vanable is similar. Since the indicator function
of a dyadic interval I is 6-Lipschitz with constant 5= 2| 7» We have

(', y) = Q)] = [©;0)(@7(x) — ©(x))|
= |@3(x) - ©5()
<X+ (X)) = Xymr (O] + 1Ko (1) = X - ()] +
+ X (x) = Xy (O] + [ X (X)) = X ()]

1

4
<4——0
3] (x, x").

Since the series defining Q is absolutely convergent, from the above remarks, we have

IQI(m)(x’,y)(-x,’ )’) > Ql(m)(x,y)(x7 y)l

5(x y) &
5(x y) £ Zz |Ql<m><xy>(x ¥) = Qon (X, y)|
e £ Z _m|1(<sn(3(xxy))|

) 16:55%6,)6 y;'

Let us estimate /1. Since |€2| is bounded above by 2 and ¢ is a metric on R*, we have

oG, y) — 6,y _ 0%, x')
o(x,y)o(x",y) — 6(x,y)o(x',y)
as we already observed, under the current conditions, 6(x’, y) = 6(x,y). And we get the desired
type estimate I1 < 25(”) Hence |P(x',y) — P(x,y)| < \5134 ‘;ﬁf x; when §(x, x') < %6(x, ).
The analogous procedure using (b) and a similar geometric consideration for x, y, y* with

§(v,y) < 36(x,y) gives

11<2

¥, Y)
82(x,y)

|P(x,y") — P(x,y)| < V21220
O

The next result contains some additional properties of P that shall be used in the next section
in order to get weighted inequalities for the maximal operator of the truncations of #.

As usual, for Calderén-Zygmund operators, the truncations of the kernel and the associated
maximal operator play a central role in the analysis of the boundedness properties of the oper-
ator. For 0 < € < R < oo set

Q(x,y)
£<6(x,y)<R} (S(X—y) .

Sometimes, for example when P acts on L”(R*,dx) with p > 1, only the local truncation
about the diagonal is actually needed. For & > 0, P, o(x,y) = Xscy)e)(X, Y)P(x,y). Since the

original form of Petermichl’s kernel is provided in terms of the Haar—Fourier analysis, a scale
5
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truncation is still possible and natural. For [ < m both in Z we consider also the scale truncation
of P between 2! and 2. In other words,

Peey)= ) () = (0],

{IeD+:2l<|T]<2m)

Since ¢ takes only dyadic values, P.g can also be written as P for 4 and u € Z. For
simplicity we shall write P, to denote P, . Hence in our notation the distinction between
the two truncations is only positional: P"™" is scale truncation; P;,, is metric truncation. Let us
compare these two kernels and the operators induced by them. The calligraphic versions ™"
and #P;,,, denote the operators induced by P and P;,, respectively.

In the next statement we use two notations for the ancestrality of a dyadic interval. Given
I € D*, I™ denotes, as before, the n-th ancestor of /. Instead T denotes the only, if any,
ancestor of / in the level D’ of the dyadic interval. For instance if I = [%, 2), then IV = [1,2),

1?=10,2),° =[1,2), P = [0,8).
Lemma 3. Let [ and m in Z with | < m. Then
(1) P"(x,y) = Piu(x,y) + Quu(x,y), where
0, foro(x,y) > 2™;

m—1 )
N V2 zl 279055, ), for 0 < 6(x,y) < 2%
I,m X,y) = J=

)
n=log, _6(x,y)

oS 2 Qe (x.y), when 2! < 5(x,y) < 2.
2

(2) P belongs to L'(R*,dx) in each variable when the other variable remains fixed.

Moreover
f PM(x, y)dx = f P""(x,y)dy = 0.
yeR* yeR*

(3) |Q1,m(X, )’)| <22 (2_1/\’ BGey)<2y (X, y) + 27" X {6(x,y)<2’"})-
(4) The inequality ' fy e QX y)dy‘ < 22 holds for every I, m in Z and every x € R*.
(5) The sequence f} e+ Qro(x, y)dy converges uniformly in x € R* for | tends to —co.

Proof. Let us rewrite together the two truncations of P for the same values of / and m with
[ < m,

P"(ey) = > () = b ()]

IeD+ 2!<|I|<2m
Q(x,y)
o(x,y)

with Q(x,y) = V2 Dm0 27" Q1) (x, y). Let us compute P""(x,y) for the three bands around
the diagonal A of R* x R* determined by 2’ and 2. First, assume that 0 < §(x,y) < 2. Then

Pl,m ()C, )’) X{21§5(x,y)<2’"}(-xa y)

1
PUey) = N2 ), o)
IeD*
2'<|n<2m
Since supp ; C I X1, once (x,y) is given, with 6(x,y) < 2!, the sum above is performed only on

those dyadic intervals I for which 2/ < |I| < 2™ that contain I(x, y); the smallest dyadic interval
6
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containing both x and y. Hence
m—1
1
P y) = V2 ) 55000, (63) = Quu(x3) = Qun(x3) + Pun(x.)
=

in the &-strip {(x,y) : R* x R* : 8(x,y) < 2!}. Second, assume that 6(x,y) > 2. Then no
dyadic interval I containing both x and y has a measure less than 2. So that P"" vanishes
when 6(x,y) > 2™ and again P = Qim + Pp . The third and last case to be considered is when
2! < 8(x,y) < 2™. Again the non-vanishing condition for €;(x, y) requires I 2 I(x, y), hence

1
P”’"(x,y) =2 Z —Q(x,y).
1eD |I|
|I|<2m
121(x,y)
Since I 2 I(x,y) then, in the above sum, I has to be an ancestor of I(x,y). Hence |I| =
2" |I(x,y)| = 2"0(x,y) forsomen = 0, 1,2, ... The upper restriction on the measure of /, |I| < 2",
provides an upper bound for n. In fact, since 2" > |I| = 2"6(x,y), n < (log, 267 (x,y) — 1.
Notice that 257! (x, y) is an integral power of 2, so that log, 2”6 '(x, y) € Z. Hence

2))‘1

log, _6(x 7)71
V2 S |
P = > Qo
S(ry) a2 9% )

V2 > 1
B o(x,y) (Q(x, i Z EQI(")(x,y)(x’ y)

n=log, (5(T,y)
= Prw(x,9) + Q1m(X,¥),

m

and (1) is proved.

In order to prove (2), notice that for x fixed P""(x,-) is a finite linear combination of Haar
functions in the variable y. Hence P""(x,-) is an L'(R*, dx) function and its integral in y van-
ishes, since each Haar function has mean value zero. An analogous argument hold for y fixed
and P (-, y).

Let us get the bound in (3). We only have to check it in the bands {6(x,y) < 2/} and {2' <
5(x,y) < 2™}. Let us first take 6(x, y) < 2'. Then

|Ql,m(-x’ )’)| = \/5

m—1 m
D270,y < V2 ) 27 <2V,
=l =l

as desired. Assume now that 2/ < §(x,y) < 2”. Then

(o)

! o L 600Y) o mm
|Q1,m(X,y)|S \/zé‘(x—,y) sz o) _2\/56()6,)}) = N

n=logs 5oy

For the proof of (4) notice that from (3) we have that, for fixed x and fixed / and m, as a
function of y, Q;,,(x,y), and hence P;,,(x,y), is integrable. Then

f Q1m(x, y)dy| < 2 \/E f {2_1X{5(x,y)<21}(x, y)+ 2_mX{6(x,y)<2m}(xa y)} dy=2 \/5

yeR* yeR*

7
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Let us prove (5). From the expression in (1) for Q;, we have

[ owtnty=2 [ (Zz 0 (5 y))dy+

yeR+ Bs(x,2")
- 1
_ \/5 f —Q n s d
5(x, y) 2. T (DI
By(x,D\By(x2)) =108 50y
-1 ! -
=2 Z 27 f Qpy(,y(x.0)dy — V2 Z 2 f (Z o ey y))dy
L et U w2y

(Z 2712/, (x) - Z 27 Z 2" "2’0‘,,,(x))

n=—i

where 7 j(x) = J%(; (x2) Qf (%, y)dy and 0,i(x) = de(x’y)zz,.} Qo) (X, y)dy and J% f denotes
the mean value of f on E. So that

—=Il-1

f Qio(x, Y)dy = Zz'm,+,<x>——(22 Zan,<x)+ Z Zan,m)

yeR+ i=-n n=—[+1

Since in the definitions of o and o~ we are taking mean values of functions with L*-norm equal
to 1, we certainly have that |5'| < 1 and |o| £ 1. Hence |Zl;1_n O',Z,i(x)| < n, and |Zl;11 O'n,i(x)| <
|| = —1. So the first term in the expression for the integral is dominated by the geometric series
Y5027, the second term is dominated by the convergent series Y., n2™" and the third term is
bounded by |/| 3, _,,; 27" which tends to zero as |/| tends to infinity. O

Let us notice that (4) and (5) in the above lemma hold also integrating in the variable x.

One more remark is in order; P is dyadicaly homogeneous of degree —1 and Q of degree
zero. In other words P(2/x,2'y) = 277P(x, y) and Q(2'x, 2'y) = Q(x, y).

From the above lemma, we conclude that with

P i = s | [ Prsoxb]. and
,meZ
P.f@) = sup |Prn(x, )|
lLmeZ
we have
P.f(x) < 4V2Myf(x) + P f(x), and
P f(x) < 4V2Myf(x) + P.f(x), (2.2)
where

Maf)= sup = 1Oy

xeleD*
the dyadic maximal operator.

3. WEIGHTED NORM INEQUALITIES FOR THE PETERMICHL’S OPERATOR

We shall see in this section that ¥ satisfies all the conditions in [[1]] in order to show the

LP(R*, wdx) boundedness for w € A,(R", §, dx) which coincides with the dyadic Muckenhoupt
8
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weights in R*. For the sake of completeness we proceed to provide the statement of the main
result in [1]] on normal spaces of homogeneous type for general Calderén-Zygmund operators.

Let X be a set. A quasi-distance on X is a nonnegative and symmetric function d on X X X,
vanishing only on the diagonal of X X X such that for some « > O the inequality d(x,z) <
k(d(x,y) + d(y, z)) holds for every x, y and z € X. The main results on the structure of quasi-
metric spaces are contained in [6]]. The Borel sets in X are those in the o-algebra generated by
the topology induced in X by the neighborhoods defined by the d-balls. If the d-balls are Borel
sets and y is a positive Borel measure such that for some constant A the inequalities

0 < u(B(x,2r)) < Au(B(x,r)) < o0

hold for every x € X and every r > 0, where B(x,r) = {y € X : d(x,y) < r}, we say the (X, d, u)
is a space of homogeneous type.

Let (X, d, 1) be a space of homogeneous type such that continuous functions are dense in
LY(X,u). Let 1 < p < oo, a nonnegative and locally integrable function w defined on X is said
to satisfy the Muckenhoupt A, condition, or w € A,(X, d, u), if there exists a constant C such

that
1oy
(JC wd,u) (JC w -l dy) <C
B B

for every d-ball B. As before, J% wdy = pu(E)™! fE w(x)du(x). A weight w is said to belong to
A if there exist two constants C and 1 > 0 such that the inequality

n

w(E) < C(/J(E))
w(B) u(B)

holds for every ball B and every measurable subset £ of B. The Hardy-Littlewood maximal

function in this setting is, naturally, given by

1
MF) = sup— fB fldi.

xeB
The results in [[7/] show the reverse Holder inequality for A, weights and, as a consequence, the
boundedness of the Hardy—Littlewood maximal in L”(X, wdu) whenw € A,,.

Theorem 4 ([7], [3]). Let (X,d,u) be a space of homogeneous type and 1 < p < oco. Then
w € A, if and only if for some constant C we have

f (M f(x))’w(x)dx < C f £ wx)du(x)
X X
for every measurable function f.

For singular integrals, the detection of the correct integral singularity of the space is attained
after normalization of the space (X, d, i) ([6]). We shall assume here that (X, d, i) is a normal
space in the sense that there exist two constants 0 < @ < 8 < oo such that ar < u(B(x,r)) < Sr.
Let us only recall two particular instances of this situation. The first, X = R", d(x,y) = [x — y|"
and u Lebesgue measure. The second, X = R*, d(x,y) = d(x,y) = |I(x,y)|, where I(x,y) is
the smallest dyadic interval containing x and y. In this case u is one dimensional Lebesgue
measure.

The next statement collects the boundedness results for singular integrals in [[1]].

Theorem 5 ([1]). Let (X,d,u) be a normal space such that continuous functions are dense in
L'. Assume that for every r > 0 and every xy € X we have that u(B(x,r) A B(xy,r)) — 0 when
d(x, x9) = 0, where EAF denotes the symmetric difference of E and F. Let T be a Calderon-
Zygmund operator on (X, d, p) in the sense of Definition|l|in Let K(x,y) be the kernel of T.

Assume that the kernel K satisfies also,
9
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(ii1) for every R > r > 0, we have

fr dlxy)<R K(x, y)d,u(y)| is bounded uniformly in r, R and x.
Moreover, fr

(iii.a)

<d(ey)<] K(x,y)du(y) converges uniformly in x when r tends to zero.

(iii.b)

fr <d(r3)<R K(x, y)d,u(x)‘ is bounded uniformly in r, R and y.

Moreover, j;<d(xy)<1
Thel’l, Wlth TR,rf('x) = LEX KRJ»(-X’ y)f()’)dﬂ()’), KR,r = Xr§d<RK and T*f(x) = Supg>0 |Too,£f(x)|’
we have

(1) for 1 < p < oo there exists the LP(X, ) limit T f of Tg,f when R — +oco and r — 0;
(2) for f € LP(X,u) and 1 < p < oo we have Cotlar’s inequality

T.f(x) s CM(T f(x)) + CM f(x);

(3) the maximal operator T, is of weak type (1,1). In other words, for some constant C > 0
we have

K(x,y)du(x) converges uniformly in y when r tends to zero.

C
udT.f> ) < 1 [VAITANS
(4) forw € Ao (X, 1)

f [T fPwx)du(x) < C f [Mf () wdu():
X X
(5) forw € A,(X, u) we have

f [T, f()Pw(x)du(x) < C f Lf O wx)du(x).
X X

As a consequence of the above result and of the results in Section [2, we get the weighted
boundedness of the maximal operators associated to Petermichl’s kernel. We say that w defined

onR* is in A%'(R*, dx) if the inequality ( ﬁ wd,u) ( JL; wl/ (f"‘)al,u)p_1 < C holds for every I € D*.

Theorem 6. For 1 < p < coandw € Af,y (R*, dx) we have that P, is bounded in L’ (R*, wdx).

Proof. Let us check that we are in the hypothesis of Theorem 5| As we already proved X = R*,
d = ¢ and u =Lebesgue measure, provide a normal space in which ¢-Lipschitz functions are
dense in L'(R*,dx). In order to prove that |Bs(x, ) A Bs(xo,7)| tends to zero when x tends to
xo for fixed positive r, just notice that when 6(x, xo) < r/2, Bs(x,r) and Bs(xo,r) coincide.
From Theorem [2] we have the kernel P(x, y) satisfies (i) and (ii) in the Definition of Calderén—
Zygmund operator. On the other hand, since P = P+ 0y, from (2), (4) and (5) in Lemma
we get (iii) in Theorem [5| Then we can apply Theorem [5|to obtain the boundedness properties
of P, in particular the weighted boundedness contained in (5). It only remains to observe that
A (R, 6,dx) = AP (R, dx) O

Theorem 7. Let 1 < p < oo. Then P* is bounded in LP(R*, wdx) if and only if w € Aiy (R*, dx).

Proof. The sufficiency of w € AZy (R*,dx) for the boundedness of #* in LP(R*,wdx), 1 <
p < oo, follows from (2.2)), Theorem [6] and Theorem [4] since Mf in (R*,,dx) is the dyadic
Hardy-Littlewood maximal function M, f. Let us finally show that Af,y (R*,dx) is necessary
for the LP(R*, wdx). Assume that w is a weight in X such that #* is bounded as an operator
on LP(X,wdu). Since P*f(x) > |Z,€D,‘,|:‘,O| (f, hry (hi-(x) — h1+(x))| for any I, € D, taking
f = hyw VD we get

L 1 L 2
P f(x) > <W p_lhloahlo> |h15(x) - hlg(x)| = A (f; w p_ldﬂ) \|/I_|X10(X)~
0 0
10
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Hence, from the inequality fX(SD* fPwdu < C fx |f|” wdu that we are assuming, taking f =

hyw™ P71 we get
et s
— w P- w(ly) < C fwl’—w
TR RZEAW/ S B TATEI A g

which implies that w € AT (R*, du). O

As a final remark, let us observe that from the representation of the Hilbert kernel given in [9]
and our result, we can get the well known weighted norm inequalities for the Hilbert transform.
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