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MARÍA FLORENCIA ACOSTA, HUGO AIMAR, AND IVANA GÓMEZ
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1. Introduction

The construction of metrics in data sets is a problem of current interest in data analysis.

Of course the metrics built on a given data set should reflect, in a quantitative form, the

affinity of the different data points. There are many reasons for the search of such metric

structures on data sets. In particular adequate metrics provide notions of neighborhood of

a given point which are not provided a priori directly by the affinity. But more important

is the fact that in metric spaces many of the properties of Euclidean spaces still hold

and covering and partitions can be done with a metric control which is natural for each

setting.

Perhaps the best known metrization method is that of diffusive metrics due to Coifman

and Laffon [4]. Once a Laplace type operator is built from the affinity matrix between

data, the spectral analysis of this operator provides a diffusion kernel which gives a

family of metrics on the data set at different times. The size of the eigenvalues allows the

detection of the main features of and hence the approximation of a high dimensional space

by another space with small dimension. In pure mathematics the problem of metrization

of general topological spaces is old and well known. In particular, the metrization of the

topology induced on a set X by a uniformity on X ×X was considered and solved in [5],

see also [3] and [6] when the uniform structure has a countable basis. The result is that

a topology induced by a uniform structure is metrizable if an only if the uniformity has

a countable basis. Even when so stated the results seems to have a qualitative character
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its proof entails a quantitative lemma due to Frink that allows to obtain a metric from

the affinity going through the uniform structure induced by the affinity between the data

points.

The first use of this quantitative lemma is due to Macias and Segovia ([7]) in order to

show that quasi-distances are equivalent to powers of metrics. In [1] sufficient conditions

on a general affinity kernel K on an abstract set X are given in order to obtain a Newton

type potential form for K in terms of a natural metric on X. Loosely speaking [1] shows

that, with a quantitative transivity hypothesis, we have that K(x, y) = ϕ(d(x, y)) for

some “metric” d and some quasi-convex decreasing function ϕ defined on the positive

real numbers.

In this note we aim to provide, test and compare an explicit algorithm in order to

obtain a metric type function d(x, y) between the vertices x and y associated to an

affinity weighted graph. The algorithm gives actually a uniform family of metrics that

provide together a profuse enough family of balls.

The second section of this note is devoted to state and prove the main result as a con-

sequence of Frink’s Lemma as stated and proved in [6]. Section 3 describes the algorithm

for the case of finite X. In Section 4 we test and compare the algorithm in some special

weighted graphs

2. Pseudometrization of affinity kernels and weighted undirected

graphs through Frink’s Lemma

Even when the problem is motivated by the finite setting provided by weighted graphs,

the basic theory does not need any assumption regarding cardinality. Hence, in this

section, we assume that X is a set and K : X × X → [0,∞) is a nonnegative function

such that for x and y in X, K(x, y) is a measure of affinity between x and y.

A pseudo-metric on the set X is a function d : X ×X → [0,∞) such that

(p-m.1) d(x, x) = 0 for every x ∈ X;

(p-m.2) d(x, y) = d(y, x), x, y ∈ X;

(p-m.3) d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X.

A pseudo-metric is a metric if d(x, y) = 0 only when x = y.

Let us now proceed to state Frink’s Lemma as given in Chapter 6 of Kelley’s book

[6]. Some notation to simplify further statements is in order. With 4 we denote the

diagonal of X ×X. In other words 4 = {(x, x) : x ∈ X}. Given a subset U of X ×X we

write U−1 to denote the set {(x, y) ∈ X ×X : (y, x) ∈ U}. We say that U is symmetric

if U = U−1. Given two subsets U and V of X × X, the composition is defined by

V ◦ U = {(x, z) ∈ X ×X : there exist y ∈ X with (x, y) ∈ U and (y, z) ∈ V }.
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Lemma 1. Let X be a set and let {Um : m = 0, 1, 2, . . .} be a sequence of subsets of

X ×X satisfying the following properties

i) U0 = X ×X;

ii) Un = U−1
n for every n;

iii) 4 ⊂ Un for every n;

iv) Un+1 ◦ Un+1 ◦ Un+1 ⊆ Un for every n.

Then, there exist a pseudo-metric d defined on X such that for every n = 1, 2, 3, . . .

Un ⊂ {(x, y) ∈ X ×X : d(x, y) < 2−n} ⊂ Un+1.

The above control of the given sequence {Un : n = 0, 1, 2, . . .} by the level sets of the

pseudo-metric d seems to be of qualitative character. Nevertheless, when the sequence Un

is itself given by level sets of some function K on X×X, this control becomes quantitative

and allows to find a natural notion of distance provided by K.

In the sequel, for a given subset V of X×X we shall use V (n) to denote the composition

V ◦ V ◦ V . . . ◦ V n times.

Let us now prove that under some mild conditions in K it is possible to construct

increasing sequences {λ(k) : k = 0, 1, 2, . . .} such that Uk+1 ◦ Uk+1 ◦ Uk+1 ⊆ Uk whenever

Uk = {K > λ(k)}.

Lemma 2. Let X be a set and let K be a nonnegative symmetric real function defined

on X ×X satisfying

a) K(x, x) = supy∈X K(x, y) for every x ∈ X;

b) 0 < Λ∞ = sup{α > 0 : {K > α}(m) = X ×X for some integer m} ≤ ∞.

Then, for every Λ with 0 < Λ < Λ∞ there exists a finite sequence 0 = λ(0) < λ(1) <

. . . < λ(k) = Λ such that {K > λ(i)}(3) ⊆ {K > λ(i − 1)} for every i = 1, 2, . . . , k.

Moreover, 4 ⊂ {K > λ(i)} for every i = 0, 1, 2, . . . , k.

Proof. Let us first notice that the setA = {α > 0 : {K > α}(m) = X ×X for some integerm}
is an interval or the whole half line R+. This fact follows from the monotonicity of the

level sets of K. In other words if α ∈ A and 0 < β < α then {K > β} ⊃ {K > α},
so that {K > β}(m) ⊃ {K > α}(m) = X × X and β ∈ A. On the other hand, for each

α ∈ A we have that 4 ⊂ {K > α}. This follows from property a) of the kernel K.

In fact, if for some x0 ∈ X we have K(x0, x0) ≤ α, then supy∈X K(x0, y) ≤ α and for

no m ∈ N the point (x0, x0) would belong to {K > α}. But since α ∈ A, for some m,

{K > α}(m) = X ×X ⊃ {(x0, x0)}.
Let us pick 0 < Λ < Λ∞. From the above remarks, we have that Λ ∈ A and 4 ⊂
{K > Λ}. Set mΛ = min{m ∈ N : {K > Λ}(m) = X × X}. In other words, {K >

Λ}(mΛ) = X × X but {K > Λ}(mΛ−1) $ X × X. We may assume that mΛ ≥ 3. Now,

consider the set A1 = {α > 0 : {K > Λ}(3) ⊆ {K > α}}. If A1 = ∅, the sequence
3
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that we are looking for has only two elements λ(0) = 0 and λ(1) = Λ. And the desired

inclusion {K > λ(1)}(3) ⊆ X × X = {K > λ(0)} holds trivially. If A1 6= ∅ take

Λ1 ∈ A1 with Λ1 > supA1 − ε for some fixed as small as desired and positive ε. Set

now A2 = {α > 0 : {K > Λ1}(3) ⊆ {K > α}}. If A2 = ∅, then we are done with

λ(0) = 0, λ(1) = Λ1 and λ(2) = Λ. So may keep iterating this selection process by

choosing λi ∈ Ai = {α > 0 : {K > Λi−1}(3) ⊆ {K > α}} with Λi > supAi − ε. Since for

{K > Λ}(mΛ) = X × X, after at most the integer part of mΛ/3 plus one iterations the

process stops providing a finite sequence of levels Λ0 := Λ > Λ1 > Λ2 > . . . > Λk. Taking

λ(i) = Λk−i for i = 0, 1, . . . , k we get the desired result. �

Let us point out that for discrete settings or for continuous kernels K the choice of the

sequence Λi in the argument above can be accomplished by taking the maximum of each

Ai. Hence the ε-approximation argument is not necessary. From the above two lemmas

we are in position to state and prove the main results of this section.

Theorem 3. Let X be a set. Let K be a nonnegative symmetric function defined on

X × X satisfying a) and b) in Lemma 2. Then for every sequence λ = {λ(i) : i =

0, 1, . . . , k = k(λ)} as in Lemma 2, there exists a pseudo-metric dλ defined on X such

that

1) {K > λ(i)} ⊆ {dλ < 2−i} ⊆ {K > λ(i− 1)} for every i = 1, 2, . . . , k;

2) the function

δλ = 2−λ
−1◦K ,

with λ−1 the inverse of any increasing extension of λ(i) to the whole interval [0, k(λ)],

is equivalent to the pseudo-metric dλ with constants that are uniform in λ. Precisely,

δλ(x, y)

4
< dλ(x, y) ≤ 2dλ(x, y).

Proof. From Lemma 2 the sequence Ui = {K > λ(i)} satisfies i) to iv) of Lemma 1.

Hence there exists a pseudo-metric dλ defined on X such that 1) holds. In order to prove

2) take (x, y) ∈ X ×X such that dλ(x, y) > 0. Hence for some i = 0, 1, . . . , k(λ) we have

2−(i+1) ≤ dλ(x, y) < 2−i.

The inequality dλ(x, y) < 2−i and the second inclusion in 1) shows that K(x, y) > λ(i−1).

The inequality 2−(i+1) ≤ dλ(x, y) and the first inclusion in 1) shows thatK(x, y) ≤ λ(i+1).

If λ is any strictly increasing extension of the sequence λ(i) for i = 0, . . . , k to the interval

[0, k] and λ−1 denote its inverse function, we have that 2−(i+1) ≤ dλ(x, y) < 2−i, and

i− 1 < (λ−1 ◦K)(x, y) ≤ i+ 1.

From this inequalities it readily follows that δλ = 2−λ
−1◦K is equivalent to dλ. In fact,

1

4
= 2−(i+1)2i−1 < dλ(x, y)2(λ−1◦K)(x,y) ≤ 2−i2i+1 = 2.

4
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�

Let us point out that the function δλ in the above result satisfies a triangle type

inequality with triangular constant equal to 8 no matter what the kernelK or the sequence

λ, satisfying Lemma 2, are. In fact,

δλ(x, z) ≤ 4dλ(x, z) ≤ 4(dλ(x, y) + dλ(y, z)) ≤ 8(δλ(x, y) + δλ(y, z))

for every x, y and z ∈ X.

Regarding the extension of λ in order to produce the function λ−1 needed to explicitly

give the quasi-metric δλ, let us observe that two extremal cases can be explicitly given.

In fact, let λ
−1

: [0, λ(k)]→ [0, k] with λ
−1

(t) = i for λ(i− 1) < t ≤ λ(i) and i = 1, . . . , k.

Also λ
−1

(0) = 0. Another possible λ−1 is a lower case λ−1 : [0, λ(k)] → [0, k − 1] given

by λ−1(t) = i− 1 for λ(i− 1) < t ≤ λ(i) for i = 1, . . . , k.

It is also worth noticing that Frink’s metric and hence also δλ, do not reflect the scaling

factor associated to the choice of Λ in Lemma 2. This is due to the fact that Frink’s metric

dλ takes only values between zero and one. So that, being δλ equivalent to dλ, also our

quasi-metric δλ is bounded.

The sequence λ(i) contains also the information of a family of δλ balls defined directly

as level sets of the affinity kernel K.

Proposition 4. For 0 < r < 1 we have that the open δλ ball centered at x ∈ X with

radious r, is given by

Bδλ(x, r) = {y ∈ X : K(x, y) > λ(log2
1
r
)}.

Proof. The inequality K(x, y) > λ(log2
1
r
) is equivalent to δλ(x, y) < r which defines

Bδλ(x, r). �

Let us point out that the actual construction of the sequence λ(i) will depend only on

K itself. Hence the δλ balls are strictly provided only by K.

3. The algorithm for the explicit computation of the sequences λ. The

finite case

In this section we consider the case of X = {1, 2, . . . , n} for some large integer n. The

kernel K defined on X ×X can be regarded as an n× n symmetric matrix with positive

entries Kij. Since each Kij is positive the hypothesis b) in Lemma 2 holds trivially since

Λ∞ ≥ minKij > 0. Instead hypothesis a) in Lemma 2 holds if Kii = supjKij.

In order to construct sequences λ, and then δλ, associated to this matrix K we shall

need to deal in the algorithm with the composition of neighborhoods of the diagonal.

Let U and V be two subsets of {1, 2, . . . , n}2 = X × X. Then, as before V ◦ U =

{(i, k) : (i, j) ∈ U and (j, k) ∈ V for some j = 1, 2, . . . , n}.
5
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Proposition 5. For a given U ⊆ {1, 2, . . . , n}n set AU = (aij(U)) to denote the n × n
rest matrix defined by aij(U) = 1 of (i, j) ∈ U and aij(U) = 0 otherwise. Then the set

V ◦ U is given by the non vanishing entries of the product matrix AUAV . Precisely

V ◦ U =

{
(i, j) ∈ {1, . . . , n}2 :

n∑
k=1

aik(U)akj(V ) ≥ 1

}
.

Proof. Notice that
∑n

k=1 aik(U)akj(V ) ≥ 1 if and only there exists k ∈ {1, . . . , n} such

that aik(U) = 1 and akj(V ) = 1. In other words, if and only if (i, k) ∈ U and (k, j) ∈ V ,

as desired. �

The next result is important at showing when the iterated composition of a neighbor-

hood of the diagonal finally covers the whole space {1, 2, . . . , n}2.

Lemma 6. Let U be a set in {1, 2, . . . , n}2 such that U contains the three main diagonals

of {1, 2, . . . , n}2. Precisely, (i, i−1), (i, i) and (i, i+1) belong to U for every i = 1, 2, . . . , n.

Then there exists m such that U (m) = {1, 2, . . . , n}2.

Proof. From the representation of U in terms of the matrix AU and the current hypothesis

in U we have that the matrix AU has ones at least in the three main diagonals. In other

words, ai,j ≥ 0, ai,i = ai−1,i = ai,i+1 = 1. Then A2
U has positive values at least in the

entries of the five diagonals 4 = {(i, i) : i = 1, . . . , n}, 4+
1 = {(i, i+1) : i = 1, . . . , n−1},

4−1 = {(i− 1, i) : i = 2, . . . , n}, 4+
2 = {(i, i+ 2) : i = 1, . . . , n− 2} and 4−2 = {(i− 2, i) :

i = 3, . . . , n}. Iteration of the above argument shows that the composition of U becomes

wider around the diagonal and after a finite number of compositions the set {1, . . . , n}2

is completely covered. �

We are now in position to describe the basic steps of an algorithm to find a sequence

λ(i) associate to the kernel K.

Algorithm. Let K = (Kij) be a n× n symmetric matrix with positive entries.

Step 1. Compute the minimum of the values of K on the three main diagonals Λ0 =

min{Ki−1,i;Ki,i;Ki,i+1 : i = 1, . . . , n},

Step 2. Build the matrix A0 = A{(i,j):Kij≥Λ0} as in Proposition 5;

Step 3. Compute A3
0;

Step 4. Define U0 as the subset of those (i, j) in {1, . . . , n}2 such that the entry in (i, j)

of A3
0 is positive;

Step 5. Find Λ1 = max{α : {K ≥ α} ⊇ U0};

Step 6. Build the matrix A1 = A{(i,j):Kij≥Λ1} as in Proposition 5;

Step 7. Compute A3
1;
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Step 8. Define U1 = {(i, j) : the entry (i, j) of A3
1 is positive};

Step 9. Find Λ2 = max{α : {K ≥ α} ⊇ U1};

· · ·

The iteration stops after a finite number of steps so we get the sequence Λ0,Λ1, . . . ,Λk.

It is clear that Λk < Λk−1 < · · · < Λ2 < Λ1. Without any extra condition on K it could

happen that Λ0 ≤ Λ1. But if Λ0 is larger than all the entries of K outside the three main

diagonals we have

Λk < Λk−1 < · · · < Λ2 < Λ1 < Λ0

Step k + 1. Set λ(i) = Λk−i; i = 0, . . . , k;

Step k + 2. Compute a version of λ−1;

Step k + 3. Define δλ(i, j) = 2−λ
−1(Kij);

Step k + 4. Plot δλ balls Bδλ(i, r) = {j : Kij > λ(log2
1
r
)} for i fixed and 0 < r < 1.

The script in Python for this algorithm is the following.

1 import matplotlib.pyplot as plt

2 import networkx as nx

3

4 ## Value of n

5 n=n

6 ## Compute minimum of K

7 Kmin=np.amin(K)

8 ## Compute Lambda_0

9 lambda_0 =0

10

11 aux=np.zeros((n))

12 for i in range(n-1):

13 ## Compare inner values main diagonals

14 aux[i]=min(K[i,i],K[i,i+1])

15 ## Compare the remaining values in the main diagonals

16 aux[n-1]=K[n-1,n-1]

17 lambda_0=min(aux)

18

19 ## Define matrix A

20 A=np.zeros ((n,n))

21

22 for i in range(n):

23 for j in range(n):

24 if K[i,j]>=lambda_0:

25 A[i,j]=1

26

27 ## Compute B=A^3

28 B=(A.dot(A)).dot(A)

29

30 ## Compute Bpos

7
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31 Bpos=np.zeros((n,n))

32 for i in range(n):

33 for j in range(n):

34 if B[i,j]>=1:

35 Bpos[i,j]=1

36

37 ## Compute C

38 C=K*Bpos

39

40 ## Compute minimum of the positive values of C

41 auxC=np.max(K)

42 for i in range(n):

43 for j in range(n):

44 if C[i,j]>0:

45 auxC=min(auxC ,C[i,j])

46 lambda_1=auxC

47

48 ## Iterate

49 ## Variables

50

51 lambda_i=np.zeros ((n))

52 lambda_i [0]= lambda_0

53 lambda_i [1]= lambda_1

54

55 A_i=np.zeros((n,n,n))

56 A_i[0,:,:]=A

57

58 B_i=np.zeros((n,n,n))

59 B_i[0,:,:]=B

60

61 Bpos_i=np.zeros ((n,n,n))

62 Bpos_i [0,:,:]= Bpos

63

64 C_i=np.zeros((n,n,n))

65 C_i[0,:,:]=C

66

67 ## While

68 h=1

69 while lambda_i[h]>Kmin:

70 ## Define matrix A

71 for i in range(n):

72 for j in range(n):

73 if K[i,j]>=lambda_i[h]:

74 A_i[h,i,j]=1

75

76 ## Compute B=A^3

77 B_i[h,: ,:]=( A_i[h,:,:].dot(A_i[h,:,:])).dot(A_i[h,:,:])

78

79 ## Bpos

80 for i in range(n):

81 for j in range(n):

82 if B_i[h,i,j]>=1:

83 Bpos_i[h,i,j]=1

8
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84

85 ## Compute C

86 C_i[h,:,:]=K*Bpos_i[h,:,:]

87

88 ## Compute minimum of the positive values of C

89 auxC=np.max(K)

90 for i in range(n):

91 for j in range(n):

92 if C_i[h,i,j]>0:

93 auxC=min(auxC ,C_i[h,i,j])

94 lambda_i[h+1]= auxC

95 h+=1

96

97 ## End while

98

99 ## Rearranging Lambda

100 lambda_i=lambda_i [0:h+1]

101 lambda_i=lambda_i [::-1]

102

103 ## Inverse function of Lambda

104 def lambda_funct_inv(t,lambd):

105 if t<0:

106 print (’t must be larger or equal to the minimum value of

lambda ’)

107 if 0<=t<lambd [0]:

108 inv=0

109 for kk in range(len(lambd) -1):

110 if lambd[kk]<=t<lambd[kk+1]:

111 inv=kk+1

112 if t>= lambd[len(lambd) -1]:

113 inv=len(lambd)

114 return inv

115

116 ## Compute the matrix

117 def dist_frink_inv(nodo1 ,nodo2):

118 distFinv =2**( - lambda_funct_inv(K[nodo1 ,nodo2],lambda_i))

119 return distFinv

120

121 dist_array_Finv=np.zeros ((n, n))

122 for v in range(n):

123 for w in range(n):

124 dist_array_Finv[v,w]= dist_frink_inv(v,w)

125

126 ## Construct the graph starting from K

127 G = nx.Graph ()

128 G = nx.from_numpy_matrix(np.matrix(K))

129

130 ## Plot the graph

131 layout = nx.spring_layout(G)

132

133 plt.figure ()

134 plt.title(’Graph’)

135 node_color=np.ones(n)

9
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136 nx.draw(G, layout , node_color=node_color ,with_labels=False)

137 nx.draw_networkx_labels(G, layout , font_size =12, font_family=’sans -

serif ’)

138 plt.show()

139

140 ## Drawing balls centered at i

141 for k in range(n):

142 for v in range(h+1):

143 if dist_array_F[i][k] > lambda_i[v]:

144 node_color[k]=h-v

145

146 node_color[i]=h+1

Listing 1. Algorithm in Python

4. Test and comparison with the diffusive metric for Newtonian type

affinities

The results in [1] suggest testing the algorithm on affinities defined as discretizations

of Newtonian type potentials of the form

Kα(x, y) =
1

|x− y|α

for α positive. Once a discretization of Kα is given we may run our algorithm and also

the well known diffusion metric introduced in [4]. See also [2]. Let us recall that the

diffusive metric at time t > 0 is given by

dt(i, j) =

{∑
l

e2tνl
∣∣xli − xl∣∣2

}1
2

where xl, νl, l = 1, . . . , L are the eigenvectors and the eigenvalues of the Laplace operator

on the graph with affinity given by the metric Kij.

We shall only write down the comparison of the families of δλ-balls, dt-balls and Eu-

clidean balls for a couple of values of the radio, when we consider the discretization

Kij =

2, for i = j

|i− j|−α , for i 6= j

with i, j = 0, . . . , 59.

It is worthy pointing out at here that the choice of 60 points of discretization is only

taken for the sake of getting better images for the graphs. In particular for the visibility

of some edges.

Let us also point out that in the following graphs, the numerical label of each vertex is

assigned according to the order of the rows in the affinity matrix, but a priori has nothing

to do with distance or affinity.

Figure 1 labels with the integers 0, 1, . . . , 59 the 60 vertices of our graph.
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Figure 1. Graph

We shall now plot some balls centered at two different vertices, 25 and 50, each for

the three metrics, the Euclidean metric (E), the Diffusive metric (D) with t = 0.005

and Frink’s metric (F). The comparison of both, (D) and (F) with the Euclidean (E) is

essential because K itself is built in terms of (E). Let us say again that we are interested

in the shape of the balls but not in the particular radii for which those balls are attained.

This fact is particulary clear in this case where the Euclidean metric is unbounded.

Nevertheless we shall write out the values of the radii for which each ball in each metric

is plotted. Actually the following pictures show in different colors the annuli between two

consecutive balls. We use yellow for the center, green for the first annulus, turquoise for

the second, lavender for the third and purple for the last annulus.

In the Figure 2 and Figure 3 we use capital letters, Y,G, T, L and P for denote the

colors. The sequences of letters and numbers describe the inner and outer radii of each

annulus.

It is worthy noticing that the sequence of raddi for (D) has been chosen in such a way

that the dt balls become as close as possible to Euclidean balls. At least for this simple

situation, of a kernel defined by a metric, the metrization scheme, (F), introduced here

seems to reproduce the exact shapes of the balls associated to the metric defining the

kernel. It could be argued that the exponential character of Frink’s construction provides

only a few balls of the graph. Nevertheless we know from the very proof of our main

result that we have at hand changing the initial parameter Λ < Λ∞ to produce a profuse

diversity of sequences λ(i). Another somehow arbitrary step of the algorithm is the use

of the main three diagonal of our affinity matrix K. Starting with the main five diagonals

will produce another family of F-balls and annuli.
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(D) Y, G, 0.11, T, 0.135, L, 0.31, P, 0.404327
(F)Y, 0.0169492, G, 0.037037, T, 0.111111, L,

0.333333, P, 1

(E) Y, G, 1, T, 3, L, 27, P, 59

Figure 2. Center at 50
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