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ON GENERALIZED DIVERGENCE AND LAPLACE
OPERATORS AS A MATTER OF DIVISION OF

DISTRIBUTIONS

HUGO AIMAR AND IVANA GÓMEZ

Abstract. Starting from the approach to the Laplacian with respect to
coupling measures and undirected weighted graphs, we provide a setting
for a general point of view for a Kirchhoff type divergence and a Laplace
operators built on the trivial gradient of order zero f(y) − f(x). We
consider some particular classical and new instances of this approach.

1. Introduction

We are going to profusely illustrate the problem that can be better stated
if we start from the general setting. Of course the roots are, as in [AG20],
in the definition of divergence and Laplacian on graphs. See [BBL+17].

Let X be a set. Let S1 be a topological algebra of real valued functions
defined on X. Let S2 be a topological algebra of real functions defined on
X×X. Set S1⊗S1 to denote the space of the tensor products (ϕ⊗η)(x, y) =
ϕ(x)η(y) with ϕ and η both in S1. Let σ(S1 ⊗S1) denote the linear span
of S1⊗S1. Assume that S1⊗S1 is continuously contained in S2 and also
the density in S2 of σ(S1 ⊗S1). In other words

σ(S1 ⊗S1) = S2, (1.1)

where the closure is, of course, taken in the topology of S2.
Set S

′
i to denote the topological dual space of Si; i = 1, 2. We shall use

single brackets 〈, 〉 to denote the duality S1, S
′
1 and double brackets 〈〈, 〉〉

to denote the duality S2, S
′
2 .

Lemma 1.1. Let S ∈ S
′
2 and Φ ∈ S2. Then the functional Σ defined for

ϕ ∈ S1 by
〈Σ, ϕ〉 = 〈〈S, ϕΦ〉〉

is well defined and belongs to S
′
1 . Sometimes we write ΣS,Φ to recall the

dependence on S and Φ

Proof. Notice first that from (1.1), for Φ ∈ S2 we have that the function
(ϕΦ)(x, y) = ϕ(x)Φ(x, y) also belongs to S2. Hence Σ is well defined and
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linear on S1.The continuity follows from the continuity of the inclusion of
S1 ⊗S1 in S2. �

The division of distributions is in general impossible. Sometimes it makes
sense and it is possible to obtain a quotient. When S ∈ S

′
2 , Φ ∈ S2 and

T ∈ S
′
1 are given and it is possible the division of Σ = ΣS,Φ by T , we are

in position to define the Kirchhoff divergence of Φ with respect to S and T .
Actually and formally

KirT,SΦ =
ΣS,Φ

T
.

Let us precise the above. Given T ∈ S
′
1 , S ∈ S

′
2 and Φ ∈ S2, a function

ψ : X → R is said to be a Kirchhoff divergence of Φ with respect to T and
S if

(1.2.a) ϕψ ∈ S1 for every ϕ ∈ S1; and
(1.2.b) 〈T, ϕψ〉 = 〈〈S, ϕΦ〉〉 for every ϕ ∈ S1.

Notice that (1.2.b) is equivalent to ψT = ΣS,Φ.
Any ψ as before is denoted by KirS,TΦ or, when S and T are understood,

by KirΦ. If Φ(x, y) can be taken to be f(y) − f(x) for some f : X → R
we call the divergence of such Φ, the Laplacian of f . Briefly

∆S,Tf = KirS,T (f(y)− f(x)).

The above formally stated formula for the Kirchhoff divergence as a quo-

tient KirT,SΦ =
ΣS,Φ
T

also applies to the induced Laplacian ∆T,Sf . Briefly

∆T,Sf =
ΣS,∇f

T

with ∇f(x, y) = f(y)− f(x).
Even more reckless than the division of distributions, but clearly related

to it, is the idea of differentiation. If Tk is a sequence of distributions in
S
′
1 that tends to zero and Sk is a sequence of distributions in S

′
2 that

also tends to zero, we may ask for fixed f , for the existence of the limit of

∆Tk,Skf =
ΣSk,∇f
Tk

.
In this paper we aim to consider classical and new cases of the above

described general setting. In particular, we obtain the divergence operators
of Kirchhoff type associated to fractional powers of the classical Laplacian
and their generalization to metric spaces. In Section 2 the discrete case is
considered. In particular we introduce the finite difference setting for the
Laplacian and for their fractional versions. In Section 3 we introduce the
generalization of the examples considered in §2, to general metric measure
spaces. The only additional hypothesis, that allows the construction of
dyadic families, is the finiteness of the metric or Assouad dimension of the
space. As a special case we consider the space of Ahlfors type with index of
regularity equal to one provided by the dyadic metric. Section 4 is devoted
to the case in which the distributions T and S are provided by measures.
Two special cases are considered, the first under an assumption of absolute
continuity and the second provided by a deterministic type coupling of the
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involved measures. In Section 5 we give an example with S a distribution of
positive order. Section 6 provides a Kirchhoff type operator which leads to
the inclusion of the classical Laplacian in our general setting. In Section 7
we study the Kirchhoff operators associated to the fractional powers of the
Laplacian in the Euclidean space for the whole range 0 < s < 1. Section 8
takes the problem of Section 7 in Ahlfors regular spaces for 0 < s < 1

2
.

In particular we consider the dyadic metric space and, using the spectral
analysis in terms of Haar wavelets for the fractional Laplacian, we give
a spectral formula for the Kirchhoff operator in this setting. Section 9 is
devoted to provide a Kirchhoff operator defined in terms of two distributions
T and S of positive order. Actually T and S are singular integrals. The last
section, §10, explores the problems of convergence of the Kirchhoff operator
given the convergence of the sequences of distributions T and S. We define
the derivative of S with respect to T and compute it for the finite difference
cases introduced in §2. Some additional examples are provided in terms of
coupling measures.

2. Dirac deltas in Euclidean spaces

With the notation introduced in Section 1, set X = Rn, the n-dimensional
Euclidean space. Let S1 = Cc(Rn) the space of compactly supported con-
tinuous real valued functions defined on Rn. Let S2 = Cc(Rn × Rn) the
continuous and compactly supported functions defined in Rn × Rn. As
usual for a given point x0 ∈ Rn we define δx0 as the unit mass measure at
x0. Or in notation of distributions 〈δx0 , ϕ〉 = ϕ(x0) for every ϕ ∈ S1. Let
{xk : k ≥ 1} be a sequence of points in Rn and {ak : k ≥ 1} a sequence of
positive real numbers which is locally finite with respect to {xk}. In other
words, for every bounded set B in Rn we have that

∑
{k:xk∈B} ak <∞. Then

T =
∑

k≥1 akδxk is a Borel measure in Rn which is finite on compact sets.

Hence T ∈ S
′
1 . The distribution (measure) T gathers the information of the

nodes {xk} and their weights {ak}. Let {wij : i, j ≥ 1} be a sequence of non-
negative real numbers which is locally finite with respect to the sequence of
points in Rn×Rn given by {(xi, xj) : i, j ≥ 1}. Precisely for every bounded
set B in Rn×Rn,

∑
{(i,j):(xi,xj)∈B}wij <∞. Hence S =

∑
i,j wijδ(xi,xj) ∈ S

′
2

and is actually a positive measure on the Borel sets of Rn × Rn.

Proposition 2.1. Let T and S be as above. Let Φ ∈ S2. Then,

(a) the first marginal S1
Φ of the measure SΦ(A) =

∫∫
Rn×Rn ΦdS is absolutely

continuous with respect to T ;
(b) the Radon-Nikodym derivative of SΦ with respect to T is the Kirchhoff

divergence of Φ with respect to S and T ,
dS1

Φ

dT
= KirS,TΦ;

(c) KirS,TΦ(xk) = 1
ak

∑
j≥1 wkjΦ(xk, xj).

IMAL PREPRINT # 2020-0047
ISSN 2451-7100 
Publication date: October 5, 2020

Prep
rin

t



4

Proof. The first marginal of S1
Φ is given by

S1
Φ = SΦ(E × Rn) =

∫∫
E×Rn

ΦdS =
∑

{k:xk∈E}

∑
j≥1

wijΦ(xk, xj).

Since each ak is positive, a subset E of Rn has T measure zero if and only
if E does not contain points of the sequence {xk}. So that S1

Φ(E) = 0,
and S1

Φ is absolutely continuous with respect to T . Hence from Radon-

Nikodym theorem there exists a function
dS1

Φ

dT
such that S1

Φ(E) =
∫
E

dS1
Φ

dT
dT

and
∫
Rn η(x)dS1

Φ(x) =
∫
Rn η(x)

dS1
Φ

dT
(x)dT (x). Then

〈〈S, ϕΦ〉〉 =

∫∫
Rn×Rn

ϕ(x)Φ(x, y)dS(x, y)

=
∑
k≥1

∑
j≥1

wkjϕ(xk)Φ(xk, xj)

=
∑
k≥1

ϕ(xk)

(∑
j≥1

wjkΦ(xk, xj)

)

=

∫
Rn
ϕ(x)dS1

Φ(x)

=

∫
Rn
ϕ(x)

dS1
Φ

dT
dT (x)

=

〈
T, ϕ

dS1
Φ

dT

〉
,

for every ϕ ∈ S1. This proves (1.2.b) in Section 1. So that KirS,TΦ =
dS1

Φ

dT
.

On the other hand, if we write explicitly (1.2.b) in this particular case we
get that for every ϕ ∈ S1∑

k≥1

akϕ(xk)ϕ(xj) =
∑
k≥1

ϕ(xk)

(∑
j≥1

wjkΦ(xk, xj)

)
.

Taking ϕ ∈ S1 such that ϕ(xk) = 1 and ϕ(xj) = 0 for j 6= k, we get (c),

ψ(xk) = KirS,T (xk) =
1

ak

∑
j≥1

wkjΦ(xkxj).

�

The current hypothesis in the data sequences {xk}, {ak} and {wkj} do
not directly allow to take Φ(x, y) = f(y) − f(x). Not even for f ∈ S1.
Hence, even when the Kirchhoff divergence type operator is well defined on
S2, we can not directly define the Laplace operator on S1. If the measure
S is finite, then the above result allows taking Φ(x, y) = f(y) − f(x) for
f ∈ S1 since, even when Φ does not belong to S2, the distribution S
extends naturally to C (Rn × Rn).
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Proposition 2.2. Let T =
∑

k≥1 akδxk be locally finite with ak > 0. Let
S =

∑
k,j wkjδ(xk,xj) be a finite measure with wij ≥ 0. For f ∈ S1 = Cc(Rn)

we have

∆T,Sf(x) =
1

ak

∑
j≥1

wjk(f(xj)− f(xk)).

Hence a function f ∈ S1 is (T, S)-harmonic if and only if for every k the
mean value formula

f(xk) =
1∑

j≥1 wjk

∑
j≥1

wkjf(xj)

holds.

The proof is an immediate consequence of (c) in Proposition 2.1.
For our further analysis it will be convenient to introduce here some

particular cases of the above discrete situation.
Let us start with the classical finite difference scheme.

Proposition 2.3 (Finite differences). Let h > 0 be given. For k̄ = (k1, . . . , kn) ∈
Zn, set xk̄ = hk̄ ∈ Rn, for every k̄. With the above notation take T = Th
with ak̄ = hn for every k̄ ∈ Zn and S = Sh with wk̄j̄ = 0 if

∣∣k̄ − j̄∣∣ > 1 or

k̄ = j̄, and wk̄j̄ = hn−2 when
∣∣k̄ − j̄∣∣ = 1. For Φ ∈ S2, we have

KirhΦ(l, k̄) = KirTh,ShΦ(l, k̄) =
1

h2

n∑
m=1

[
Φ(lk̄, h(k̄ + ēm) + Φ(hk̄, h(k̄ − ēm)))

]
where ēm is the m-th vector of the canonical basis of Rn. For f ∈ S1 =
Cc(Rn), taking Φ(x, y) = f(y)−f(x) we obtain the corresponding Laplacian
operator

∆hf(hk̄) =
n∑

m=1

h(k̄ + ēm)− 2f(hk̄) + f(h(k̄ − ēm))

h2
.

Moreover, the harmonic functions are those for which

f(hk̄) =
1

2n

n∑
m=1

[
f(h(k̄ + ēm)) + f(h(k̄ − ēm))

]
.

Proof. Follows directly from (c) in Proposition 2.1 by noticing that

{j̄ ∈ Zn :
∣∣k̄ − j̄∣∣ = 1} = {k̄ + ēm : m = 1, . . . , n} ∪ {k̄ − ēm : m = 1 . . . , n}.

�

Let us point out that the normalizations of Th and Sh with hn, do not
reflect in the Kirchhoff and Laplace operators. Nevertheless, since hn is
the volume of each cube in the cubic partition naturally induced by the
sequence {hk̄ : k̄ ∈ Zn}, the measure Th is an approximation, in the weak
convergence, of Lebesgue measure on Rn and has to be considered when we
have a more abstract non-translation invariant setting.
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The next example of the general situation is a discretization of the frac-
tional Laplacian in Rn.

Proposition 2.4 (Discrete Fractional Laplacian). Let {xk̄ : k̄ ∈ Zn} and
Th be as in Proposition 2.3. Let α > 0 be given. Set wα

k̄j̄
= 0 if k̄ = j̄ and

wα
k̄j̄

= hn−α 1

|k̄−j̄|n+α if k̄ 6= j̄. Let Sαh =
∑

k̄j̄ w
α
k̄j̄
δ(hk̄,hj̄). For Φ ∈ S2 we have

Kirα,hΦ = KirTh,SαhΦ =
1

hα

∑
j̄ 6=k̄

Φ(hk̄, hj̄)∣∣k̄ − j̄∣∣n+α .

For f ∈ S1, with Φ(x, y) = f(y)− f(x), the above series is still convergent
and

∆α
hf(hk̄) =

1

hα

∑
j̄ 6=k̄

f(hj̄)− f(hk̄)∣∣k̄ − j̄∣∣n+α .

Moreover, a function f is α harmonic if and only if for every k̄ ∈ Zn we
have

f(hk̄) =
1

c(α)

∑
j̄ 6=k̄

f(hj̄)∣∣k̄ − j̄∣∣n+α

with c(α) =
∑

j̄ 6=0̄ |j|
−n−α.

Proof. Follows from (c) in Proposition 2.1 and the absolute convergence of
the involved series. �

The examples in Propositions 2.3 and 2.4 are both given in terms of
measures, nevertheless for h→ 0 we have to leave the measure space setting
to allow more general distributions. We shall come back to this issue later
on.

3. Dirac deltas in metric measure spaces

In this section we shall briefly extend the constructions provided in Sec-
tion 2 to metric measure spaces. It is clear that we should overcome several
restrictions in the new setting. In particular we loss translation invariance
and homogeneity. Nevertheless there exist in the literature regarding anal-
ysis on spaces of homogeneous type, and more general non-doubling struc-
tures, some geometric constructions which will help us in our approach to
that extension. It is also worthy mention that most of the theory can be
given for quasi-metrics, not just for metrics. Two reasons advise for an
approach based on metric spaces. The first is simplicity. The second, more
deep, is that a well known theorem due to Maćıas and Segovia [MS79] shows
that every quasi-metric is equivalent to a power of a metric.

Let (X, d) be a complete metric space. Assume that there exists an N
such that no d-ball of radius r in X contains more than N points of any
r
2
-disperse set Dr/2 in X. We say that Dε ⊂ X is ε-disperse if d(x, y) ≥ ε

for every choice of x and y in Dε. This property of X is in fact a property
of finite dimension, metric or Assouad finite dimension. By taking maximal
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ε-disperse sets in X we obtain ε-nets in X. And since each of them is locally
finite, the space (X, d) is separable. But, most important for our purposes
is the existence of dyadic type nested partitions with metric control in X.
For the case of spaces of homogeneous type, which entails the existence of
a doubling Borel measure on X, the construction was given by M. Christ in
[Chr90]. The extension to metric spaces with finite Assouad dimension is
simple. The basic result is the existence of dyadic nested families satisfying
all the properties of the following definition.

Definition 3.1. A dyadic family in (X, d) is a countable family D =⋃
j∈ZDj of Borel subsets of X such that there exists 0 < δ < 1, constants

a < b and M ∈ N and a sequence {xjk : k ∈ Kj} with Kj an initial interval
of positive integers which could be all Z+, in X satisfying:

(D1) each Dj is a disjoint partition of X;
(D2) for each Qj

k ∈ Dj we have that Bd(x
j
k, aδ

j) ⊆ Qj
k ⊆ Bd(x

j
k, bδ

j);

(D3) each Qj
k ∈ Dj can be written as the disjoint union of at most M sets

Qj+1
l in Dj+1.

Once we have a dyadic family on X the nets {xjk} of points in X inherit
at least two ways, which are essentially different, to interpret the idea of
neighbor. The first is given by the metric d and the second by the ancestry
induced by the three structure of the dyadic system D.

In the current general setting given by (X, d), taking S1 = Cc(X, d) the
space of continuous and compactly supported functions in X and S2 =
Cc(X × X) the space of continuous and compactly supported functions
in X × X, and {xk} a sequence in X, the construction of T and S and
Propositions 2.1 and 2.2 of the previous section, hold mutatis mutandis.
For the sake of completeness and clearness we collect these basic results in
the following statement.

Proposition 3.1. Let (X, d) be a complete metric space. Let S1 = Cc(X)
and S2(X ×X). Let {ak} be a sequence of positive real numbers which is
locally finite with respect to {xk} (i.e.

∑
{k:d(xk,x0)<R} ak <∞ for every x0 ∈

X and every R > 0). Let {wkj} be a sequence of nonnegative real numbers
that is locally finite with respect to the sequence {(xk, xj) : k, j} ⊆ X ×X.
Set T =

∑
k akδxk and S =

∑
k,j wkjδ(xk,xj). Then

(A) for Φ ∈ S2

KirT,SΦ(xk) =
1

ak

∑
j≥1

wkjΦ(xk, xj);

(B) if S is a finite measure and f ∈ S1,

∆T,Sf(xk) =
1

ak

∑
j≥1

wkj(f(xj)− f(xk)).
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We aim to apply the above general result to obtain analogues of Proposi-
tions 2.3 and 2.4, involving the geometric and measure theoretic properties
of the underlying space X.

We shall keep working in a complete metric space with finite metric di-
mension equipped with a Borel measure µ which is finite and positive on
the d-balls.

Proposition 3.2. Let (X, d) be a complete metric space with finite metric
dimension. Let D be a dyadic family in X. Let µ be a positive Borel
measure on X which is positive and finite on d-balls. For j fixed, set Tj =∑

k µ(Qj
k)δxjk

(3.2.1) Let Sj =
∑

k,iw
j
kiδ(xjk,x

j
i )

with

wjki = Hj
ki ·


0 if k = i;

µ(Qj
k) + µ(Qj

i ) if k 6= i and d(xjk, x
j
i ) < Cδj;

0 if d(xjk, x
j
i ) ≥ Cδj,

where C is a fixed constant and for each j, Hj
ki is a positive sym-

metric matrix. Then, for Φ ∈ S2 we have

KirjΦ(xjk) =
1

µ(Qj
k)

∑
{i6=k:d(xji ,x

j
k)<Cδj}

Φ(xjk, x
j
i )
(
µ(Qj

k) + µ(Qj
i )
)
Hj
ki.

(3.2.2) For f continuous and bounded on X, we have

∆jf(xjk) =
1

µ(Qj
k)

∑
{i:d(xji ,x

j
k)<Cδj}

(
f(xji )− f(xjk)

) (
µ(Qj

k) + µ(Qj
i )
)
Hj
ki

=
∑

{i:d(xji ,x
j
k)<Cδj}

(
f(xji )− f(xjk)

)(
1 +

µ(Qj
i )

µ(Qj
k)

)
Hj
ki.

Proof. Follows from Proposition 3.1 for the particular choice of Tj and Sj
�

Let us observe that the factor Hj
ki defining wjki allows to have Proposi-

tion 2.3 as a particular case of Proposition 3.1, with Hj
ki = δ−2j and h = δj.

Regarding the extension to our more general geometric setting of the dis-
crete fractional Laplacian, let us say that we have several points of view for

the term
∣∣k̄ − j̄∣∣n+α

defining the weights wk̄j̄ in the Eucliden case. Among

them we shall adopt the mixed one, where
∣∣hk̄ − hj̄∣∣n = hn

∣∣k̄ − j̄∣∣n is seen

as the volume of the cube of side h
∣∣k̄ − j̄∣∣ and

∣∣hk̄ − hj̄∣∣α as the distance

between the points hk̄ and hj̄ of the given net.

Proposition 3.3. Let (X, d), D, µ and T , be as in Proposition 3.2. Let
α > 0 and j an integer be given. Set wj,αkk = 0 and for i 6= k,

wj,αki =
µ(Qj

k)µ(Qj
i )

dα(xjk, x
j
i )
[
µ(B(xjk, d(xjk, x

j
i ))) + µ(B(xji , d(xjk, x

j
i )))
] .
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Let Sαj =
∑

k,iw
j,α
ki δ(xjk,x

j
i )

. Then, for φ ∈ S2,

Kirα,jΦ(xjk) =
∑
i6=k

µ(Qj
i )Φ(xjk, x

j
i )

dα(xjk, x
j
i )
[
µ(B(xjk, d(xjk, x

j
i ))) + µ(B(xji , d(xjk, x

j
i )))
] .

For f bounded we also have

∆α,jf(xjk) =
∑
i

µ(Qj
i )(f(xji )− f(xjk))

dα(xjk, x
j
i )
[
µ(B(xjk, d(xjk, x

j
i ))) + µ(B(xji , d(xjk, x

j
i )))
] .

Again the proof is just substitution in Proposition 3.1 of the measures Tj
and Sαj .

Let us point out that if the space (X, d, µ) is γ-Ahlfors, which means
that µ(Bd(x, r)) ' rγ with fixed constants, then the above formula for the
Laplacian takes the form

∆α,jf(xjk) '
∑
i

(
f(xji )− f(xjk)

)(
d(xjk, x

j
i )
)γ+α δj.

Which can be considered, for j large enough, a good approximation of

∆αf(x) =

∫
y∈X

f(y)− f(x)

d(x, y)γ+α
dµ(y),

the fractional Laplacian on (X, d, µ) when f has some Lipschitz type regu-
larity.

As we said before, when a dyadic system like D is given in a measure
space there is still another idea of neighborhood based in ancestry instead
of the distance d itself. Let us briefly introduce it. Assume that X is a
quadrant for D in the sense that the union of all ancestors of any Qj

k ∈ D
is the whole space X. From property (D2) of D we clearly have that for x
and y in X with x 6= y there exists j large enough such that x ∈ Qj

k and

y ∈ Qj
i with i 6= k. So that ρ(x, y) = inf{µ(Q) : Q ∈ D, x ∈ Q and y ∈ Q}

is well defined, positive and is actually a minimum. From the properties of
the dyadic cubes in D, it is easy to see that ρ is a metric on X. If the space
(X,µ) has no atoms then Bρ(x, r) = {y : ρ(x, y) < r} = Q, the largest
dyadic cube Q ∈ D containing x such that µ(Q) < r. If we consider now
X equipped with the new metric ρ instead of d and the measure µ, we can
define corresponding discrete Laplace type operators.

For the sake of simplicity we shall only describe this approach in R+ with
the standard dyadic intervals and Lebesgue measure. That is X = R+ =
{x ≥ 0, x ∈ R}, D =

⋃
j∈ZDj, Dj = {Ijk : [k2−j, (k+1)2−j) : k = 0, 1, 2, . . .},

ρ(x, y) = inf{|I| : I ∈ D and x, y ∈ I}. Notice |x− y| ≤ ρ(x, y) but their
are certainty not equivalent. Set xjk = k2−j, so that [xjk, x

j
k+1) = Ijk and

xjk ∈ Ijk but xjk+1 does not. As we observed before in the general setting
Bρ(x, r) = I ∈ D, where I is the largest dyadic interval containing x such
that the length |I| of I is less than r. Notice also that the ρ-balls have
measure equal to 2−m for some integer m ∈ Z.
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Proposition 3.4. Let X = R+, ρ the dyadic distance, |E| the Lebesgue
measure of E and xjk = k2−j, k = 0, 1, . . . Assume that j is fixed. Let Tj =∑

k≥0 2−jδxjk
= 2−j

∑
k≥0 δxjk

. Set wjki = 0 if k = i and if ρ(xjk, x
j
i ) > 2−j+2

and wjki = 2−j when ρ(xjk, x
j
i ) ≤ 2−j+2. Then for f continuous and bounded

on R+ we have

∆ρ,jf(xjk) =
∑

i:ρ(xjk,x
j
i )≤2−j+2

(
f(xji )− f(xjk)

)
=
( ∑
i:ρ(xjk,x

j
i )≤2−j+2

f(xji )
)
− 3f(xjk).

Let us point out that the right hand side of the above identity can be
explicitly written in terms of the indices of the sequence xji . In fact, if
k = 4l + m with m ∈ {0, 1, 2, 3} and {m1,m2,m3} = {0, 1, 2, 3} \ {m}, we
see that

∆ρ,jf(xjk) = f(xj4l+m1
) + f(xj4l+m2

) + f(xj4l+m3
)− 3f(xj4l−m).

The discrete fractional Laplacian associated to the metric ρ takes the form
described in the next statement.

Proposition 3.5. Let X, ρ, {xjk : k ∈ Z+} and Tj be as in Proposition 3.4.

Let α > 0 be given. Define Sαjρ through the sequence wj,αki = 0 if k = i and
for k 6= i

wj,αki =
4−j

ρ(xjk, x
j
i )

1+α.

Then for f bounded and continuous we have

∆ρ
α,jf(xjk) =

∑
i≥0

f(xji )− f(xjk)

ρ(xjk, x
j
i )

2−j.

Again, for f ∈ Lipβ,ρ(R+) with some β > α, these sequences are good
approximations of the fractional Laplacian with respect to the dyadic metric

∆ρ,αf(x) =

∫
R+

f(y)− f(x)

δ(x, y)1+α
dy,

whose spectral theory is known (see [ABG13], [AABG16]).

4. General measures

Let X be a locally compact space. Let S1 = Cc(X) the space of com-
pactly supported continuous functions in X. Let S2 = Cc(X ×X) be the
space of compactly supported continuous function defined in X ×X. Borel
measures which are finite on compact sets provide distributions in S

′
1 and

S
′
2 . Let µ be a Borel measure on X which is finite on compact sets of X

and π a Borel measure on X ×X which is finite on compact sets of X ×X.
As usual set Tµ and Sπ to define the distributions 〈Tµ, ϕ〉 =

∫
X
ϕdµ for
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ϕ ∈ S1 and 〈〈Sπ,Φ〉〉 =
∫∫

X×X Φdπ for Φ ∈ S2. In this case the formula
defining the Kirchhoff divergence of Φ in (1.2.b) becomes,∫

X

ϕψdµ =

∫∫
X×X

ϕΦdπ (4.1)

for every ϕ ∈ Cc(X).
It is worthy noticing that (4.1) may have no solution. In fact, let X =

[0, 1] with its standard metric structure. Take µ = δ0 and dπ = dxdy in
the unit square. If Φ ≡ 1 the right hand side of (4.1) is

∫∫
[0,1]2

ϕ(x)dxdy =∫
[0,1]

ϕ(x)dx. The left hand side of (4.1) for ψ ∈ C [0, 1], instead
∫

[0,1]
ϕψdδ0 =

ϕ(0)ψ(0). Taking ϕ with ϕ(0) = 0 and
∫

[0,1]
ϕdx > 0 we see that (4.1) can

not hold. On the other hand, it is also easy to observe that non uniqueness
of solution of (4.1) is possible. Let X = [0, 1], µ = δ0, π = δ0 × δ0 and
Φ ≡ 1. Since the left hand side of (4.1) is again given by ϕ(0)ψ(0) and the
right hand side is now given by∫∫

[0,1]2
ϕΦ dπ =

∫∫
[0,1]2

ϕd(δ0 × δ0) = ϕ(0).

So that any continuous ψ with ψ(0) = 1 solves (4.1). Some particular cases
of existence and uniqueness for coupling probability measures are given in
[AG20].

Two somehow extremal situations of the relation between µ and T are
provided by the probabilistic concepts of independence and determinism.
The next two results point in each one of these directions.

Proposition 4.1. Let X, S1, S2 and µ as before. Assume that π = π1×π2

with π1 << µ and π2 a positive measure which is finite on the compacts of
X. Then, for Φ ∈ S2 we have

Kirµ,πΦ(x) =
dπ1

dµ
(x)

∫
y∈X

Φ(x, y)dπ2(y),

where dπ1

dµ
denotes the Radon-Nikodym derivative of π1 with respect to µ.

Moreover, if π2(X) <∞, for f continuous and bounded we have

∆µ,πf(x) =
dπ1

dµ
(x)

(∫
y∈X

f(y)dπ1(x)− f(x)π2(X)

)
.

Proof.∫
y∈X

ϕ(x)ψ(x)dµ(x) =

∫
x∈X

ϕ(x)

(∫
y∈X

Φ(x, y)dπ2(y)

)
dπ1(x)

=

∫
x∈X

ϕ(x)
dπ1

dµ
(x)

(∫
y∈X

Φ(x, y)dπ2(y)

)
dµ(x)

for every ϕ ∈ S1. �

The next result concerns the deterministic case.
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Proposition 4.2. Let X be a locally compact space and let µ be a Borel
measure on X which is finite on compact sets. Let F : X → X be a
continuous transformation of X. Set G : X → X × X, G(x) = (x, F (x)).
Let π be the measure defined on the Borel subsets of X×X by π = µ ◦G−1,
in other words

π(E) = µ(G−1(E))

for E any Borel set in X ×X. Then for Φ ∈ Cc(X ×X) we have

Kirµ,FΦ(x) = Φ(x, F (x))

and for f continuous on X,

∆µ,Ff = f ◦ F − f.

Proof. Notice first that, for Θ ∈ Cc(X ×X) we have∫∫
X×X

Θdπ =

∫
X

Θ(x, F (x))dµ(x).

This follows from the standard arguments noticing that for Θ = XE, E a
Borel subset of X×X, the formula is nothing but the definition of π. Hence
the right hand side of (4.1) can be written as∫∫

X×X
ϕ(x)Φ(x, y)dπ(x, y) =

∫
X

ϕ(x)Φ(x, F (x))dµ(x)

for every ϕ ∈ Cc(X). Hence

Kirµ,FΦ = Φ ◦G

as desired. �

For further reference, notice that if for h > 0 we take in Proposition 4.2,
πh = 1

h
µ ◦G−1, we would have the Laplace operator given by

∆µ,F,hf =
1

h
(f ◦ F − f).

5. S of positive order. The case of the derivatives of
deterministic couplings

So far we have only considered measures, i.e. distributions of order zero
even when our general point of view in the introduction is given in terms of
general distributions of Schwartz type.

Let S1 = C∞c (Rn), S2 = C∞c (Rn × Rn). Assume a C 1 mapping F :
Rn → Rn is given. Let µ be a Borel measure on Rn that is finite on
compact sets. Set, as in Proposition 4.2, π = µ◦G−1 with G(x) = (x, F (x)),
x ∈ Rn. Taking in (1.2.b) T = Tµ as before and S to be some distributional
partial derivative of π, we may find explicit formulas for Krichhoffean and
Laplacean operators. Let us state precisely the setting and the results.
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Proposition 5.1. Let F , µ and T as before. Assume that dµ(x) = g(x)dx
with g smooth and positive. Let 〈Tµ, ϕ〉 =

∫
Rn ϕ(x)g(x)dx. Set S1

i = ∂π
∂xi

and S2
i = ∂π

∂yi
, i = 1, . . . , n, where the partial derivatives are considered in

the sense of distributions in R2n. Then, for Φ ∈ S2,

Kiri,1Φ =
1

g

∂

∂xi
[g · (Φ ◦G)]− ∂Φ

∂xi
◦G

Kirj,2Φ =
∂Φ

∂yj
◦G.

For f smooth

∆i,1f =
∂F

∂xi
· (∇f ◦ F ) +

[
(f ◦ F )− f

] ∂
∂xi

(log g) ;

∆j,2f =
∂f

∂xj
◦ F.

Proof. We have to check (1.2.b) which in the current situation reads∫
Rn
ϕ(x)ψ(x)g(x)dx = −

∫∫
R2n

∂

∂xi
(ϕΦ)(x, y)dπ(x, y).

Let us write out the right hand side above in terms of π. We have that

−
∫∫

R2n

∂

∂xi
(ϕΦ)(x, y)dπ(x, y)

= −
∫
Rn

∂

∂xi
(ϕΦ)(x, F (x))g(x)d(x)

= −
∫
Rn

∂ϕ

∂xi
(x)Φ(x, F (x))g(x)d(x)−

∫
Rn
ϕ(x)

∂Φ

∂xi
(x, F (x))g(x)d(x)

=

∫
Rn

∂

∂xi
[g · (Φ ◦G)](x)ϕ(x)d(x)−

∫
Rn
g(x)

∂Φ

∂xi
(x, F (x))ϕ(x)d(x)

for every ϕ ∈ S1. Hence

ψ =
1

g

∂

∂xi
(g · Φ ◦G)− ∂Φ

∂xi
◦G

as desired. For the second formula take Φ(x, y) = f(y)− f(x) in the above.
Then

∆i,1f(x) =
1

g(x)

∂

∂xi
[g(x) (f(F (x))− f(x))]− ∂(f(y)− f(x))

∂xi
(x, F (x))

= ∇f(F (x)) · ∂F
∂xi

(x)− ∂f

∂xi
(x) +

∂ log g(x)

∂xi
(f(F (x))− f(x)) +

∂f

∂xi
(x),

which is the desired formula. For the derivatives with respect to the y
variables the calculations are even easier. For ϕ ∈ S1,∫

Rn
ϕΦgdx =

∫∫
R2n

∂

∂yj
(ϕΦ)dπ
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= −
∫∫

R2n

ϕ(x)
∂Φ

∂yj
(x, y)dπ(x, y)

= −
∫
Rn
ϕ(x)

∂Φ

∂yj
(x, F (x))g(x)dx,

which proves the desired formula for Kirj,2Φ. �

6. The classical Laplacian in Rn and formula (1.2.b)

In this brief section we search for a couple of distributions T and S in

Rn and R2n respectively, such that the classical Laplacian ∆f =
∑n

i=1
∂2f
∂x2
i
,

can be seen as KirT,S(f(y)− f(x)), in the sense of (1.2.b). It is important
at this point to emphasize that we are not trying to define the Laplacian.
Instead, given the classical Laplacian, we are providing two distributions T
and S such that KirT,S(f(y)− f(x)) = ∆f .

Proposition 6.1. Let S1 = C∞c (Rn) and S2 = C∞c (R2n), the classical
test function spaces in Rn and R2n. Let T be the distribution in Rn gen-
erated by the function identically equal to one. In other words, 〈T, ϕ〉 =∫
Rn ϕ(x)dx, ϕ ∈ S1. Let π be the measure defined in R2n by π(E) =
|{x ∈ Rn : (x, x) ∈ E}|n, where |·|n denotes the n-dimensional Lebesgue mea-
sure. Since π is a locally finite positive measure in R2n, it defines a distribu-
tion in R2n. Set S = ∆yπ =

∑n
j=1

∂2π
∂y2
j
, where the derivatives are considered

in the sense of distributions. Then

∆f(x) = KirT,S(f(y)− f(x)).

Proof. Let us first find KirT,SΦ for Φ ∈ S2. To check (1.2.b) in this case,
let us start from the right hand side with ϕ ∈ S1 and Φ ∈ S2,

〈〈S, ϕΦ〉〉 = 〈〈∆yπ, ϕΦ〉〉
= (−1)2〈〈π,∆y(ϕΦ)〉〉
= 〈〈π, ϕ∆yΦ〉〉

=

∫∫
R2n

ϕ(x)(∆yΦ)(x, y)dπ(x, y)

=

∫
Rn
ϕ(x)(∆yΦ)(x, x)dx.

Since the left hand side of (1.2.b) reads

〈T, ϕψ〉 =

∫
Rn
ϕ(x)KirT,SΦ(x)dx

and the equation has to be true for every ϕ ∈ S1, we get

KirT,SΦ(x) = (∆yΦ)(x, x).

For f ∈ S1 we get

∆T,Sf(x) = KirT,S(f(y)− f(x)) = ∆f(x),

as desired. �

IMAL PREPRINT # 2020-0047
ISSN 2451-7100 
Publication date: October 5, 2020

Prep
rin

t



15

7. On fractional Kirchhoff Divergences in the Euclidean
space

The observation regarding the Kirchhoff divergence and the Laplacian in
the previous section, shows that the differential character of the operator
induced by S, assuming T = 1, is related to the singularity of S on the
diagonal of Rn × Rn. In this section we explore this fact, searching for
the distributions S that produce, through (1.2.b), Kirchhoff fractional type
operators. The distributions Ss in R2n are defined in terms of the “affinity”

|x− y|−(n+2s) for 0 < s < 1. The singularity of the kernel on the diagonal
of Rn×Rn increases as s tends to one. Actually s = 1

2
divides the character

of the singularity and hence the actual definition of the distribution Ss. We
shall consider these two cases separately.

First case: 0 < s < 1
2
. Let us start by proving the convergence of the

integral defining the distribution S.

Lemma 7.1. For Φ ∈ C∞c (R2n) the function defined in R2n by Φ(x,y)−Φ(x,x)

|x−y|n+2s

is in L1(R2n). The linear functional S : C∞c (R2n)→ R given by

〈〈S,Φ〉〉 =

∫∫
R2n

Φ(x, y)− Φ(x, x)

|x− y|n+2s dxdy

defines a distribution in D
′
(R2n).

Proof. Let K be a compact set in Rn such that supp Φ ⊂ K × Rn. Then,
with ωn−1 the surface area of the unit sphere of Rn,∫∫

R2n

|Φ(x, y)− Φ(x, x)|
|x− y|n+2s dxdy

=

∫
K

∫
Rn

|Φ(x, y)− Φ(x, x)|
|x− y|n+2s dxdy

≤
∫
K

{∫
|x−y|<1

|Φ(x, y)− Φ(x, x)|
|x− y|n+2s dy + 2 ‖Φ‖∞

∫
|x−y|≥1

dy

|x− y|n+2s

}
dx

≤
∫
K

{∫
|x−y|<1

‖∇yΦ‖∞ |x− y|
|x− y|n+2s dy +

ωn−1 ‖Φ‖∞
s

}
dx

= ωn−1 |K|
(
‖∇yΦ‖∞
1− 2s

+
‖Φ‖∞
s

)
.

In order to prove the continuity with the topology of C∞c (R2n) of the linear

functional 〈〈S,Φ〉〉 =
∫∫

R2n

Φ(x,y)−Φ(x,x)

|x−y|n+2s dxdy, take a sequence Φk that tends

to zero in C∞c (R2n). This means that there exists a compact set K in
R2n containing the supports of all the Φ′ks, and Φk and all its derivatives
converge uniformly to zero in R2n. Let now K be the projection of K in the
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first variables x = (x1, . . . , xn). Hence

|〈〈S,Φk〉〉| ≤
∫
K

∫
Rn

|Φk(x, y)− Φk(x, x)|
|x− y|n+2s dxdy

≤ ωn−1 |K|
(
‖∇yΦk‖∞

1− 2s
+
‖Φk‖∞
s

)
which tends to zero when k →∞. �

Lemma 7.2. For Φ ∈ C∞c (R2n) the function

ψ(x) =

∫
Rn

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

belongs to C∞c (Rn) and is bounded by ωn−1

(
‖∇yΦ‖∞

1−2s
+
‖Φ‖∞
s

)
.

Proof. It is clear that if x does not belong to the projection, in the variable
x, of the support of Φ, we have that ψ(x) = 0. On the other hand, as we

showed in the proof of Lemma 7.1, |ψ(x)| ≤ ωn−1

(
‖∇yΦ‖∞

1−2s
+
‖Φ‖∞
s

)
. The

regularity of ψ follows from the fact that ψ(x) =
∫
Rn

Φ(x,x−y)−Φ(x,0)

|y|n+2s dx. �

Proposition 7.3. With S as in Lemma 7.1 in D
′
(R2n) and T the distribu-

tion induced in Rn by the function identically equal to one, we have

KirT,SΦ(x) = ψ(x) =

∫
Rn

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy (7.1)

for every Φ ∈ C∞c (R2n).

Proof. In the current situation equation (1.2.b) takes the form∫
Rn
ϕ(x)KirT,SΦ(x)dx = 〈T, ϕKirT,SΦ〉

= 〈〈S, ϕΦ〉〉

=

∫∫
R2n

ϕ(x)Φ(x, y)− ϕ(x)Φ(x, x)

|x− y|n+2s dxdy

=

∫
Rn
ϕ(x)

(∫
Rn

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

)
dx

for every ϕ ∈ C∞c (Rn). �

Notice that the boundedness of ψ in Lemma 7.2 only requires the bound-
edness of Φ and its gradient in the second variable y = (y1, . . . , yn). So that
if f and its gradient are bounded, we can take Φ(x, y) = f(y) − f(x) in
formula (7.1) in order to obtain the fractional Laplacian (−∆)s, 0 < s < 1

2
,

as a Kir grad operator with grad f(x, y) = f(y) − f(x) and Kir given by
(7.1). Precisely,

(−∆)sf(x) =

∫
Rn

f(y)− f(x)

|x− y|n+2s dy.
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Second case: 1
2
≤ s < 1. In this case the integral defining S has to be

taken in the principal value sense, because for s ≥ 1
2

the function Φ(x,y)−Φ(x,x)

|x−y|n+2s

is generally not integrable in R2n.

Lemma 7.4. For every Φ ∈ C∞c (R2n) the limit limε→0

∫∫
Bcε

Φ(x,y)−Φ(x,x)

|x−y|n+2s dxdy

exists, where Bc
ε is the complement in R2n of the diagonal ε-band Bε =

{(x, y) ∈ Rn × Rn : |x− y| < ε}. Moreover, the limit defines a distribution
in D

′
(R2n).

Proof. Let ε > 0 fixed. Let us denote by∇y the gradient of functions defined
on Rn×Rn with respect to y, the second group of variables. Notice first that∫∫

Bcε

|Φ(x,y)−Φ(x,x)|
|x−y|n+2s dxdy is finite. In fact, with K such that supp Φ ⊂ K×Rn,

K compact,∫∫
Bcε

|Φ(x, y)− Φ(x, x)|
|x− y|n+2s dxdy =

∫
x∈K

(∫
|x−y|≥ε

|Φ(x, y)− Φ(x, x)|
|x− y|n+2s dy

)
dx

≤ cn,s ‖Φ‖∞ |K| ε
−2s.

Since, from symmetry, we have
∫
ε≤|x−y|<1

∇yΦ(x,x)·(x−y)

|x−y|n+2s dy = 0, we write∫∫
Bcε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dxdy

=

∫
x∈K

(∫
ε≤|x−y|<1

Φ(x, y)− Φ(x, x)−∇yΦ(x, x) · (y − x)

|x− y|n+2s dy

+

∫
|x−y|≥1

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

)
dx.

So that, for 0 < δ < ε < 1 we get∣∣∣∣∣
∫∫

Bcδ

−
∫∫

Bcε

∣∣∣∣∣
=

∣∣∣∣∫
x∈K

(∫
ε>|x−y|≥δ

Φ(x, y)− Φ(x, x)−∇yΦ(x, x) · (y − x)

|x− y|n+2s dy

)
dx

∣∣∣∣
≤
∫
x∈K

∫
ε>|x−y|≥δ

sup
|α|=2

∥∥∂αy Φ
∥∥
∞
|x− y|2

|x− y|n+2sdydx

= cn,s sup
|α|=2

∥∥∂αy Φ
∥∥
∞ (ε2(1−s) − δ2(1−s)),

which tends to zero for ε → 0. Here |α| =
∑n

i=1 αi is the length of the
multiindex α.

Let us prove that 〈〈S,Φ〉〉 = limε→0

∫∫
Bcε

Φ(x,y)−Φ(x,x)

|x−y|n+2s dxdy defines a distri-

bution in D
′
(R2n). Let {Φk : k ∈ N} be a sequence in C∞c (R2n) such that

Φk → 0 in C∞c (R2n). Let K be a compact set R2n such that supp Φk ⊆ K,
for every k ∈ N. Moreover, ∂αΦk ⇒ 0, uniformly for every α ∈ N2n

0 . With
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K compact in Rn such that K × Rn ⊇ K, we have

|〈〈S,Φk〉〉|

= lim
ε→0

∣∣∣∣∫
x∈K

(∫
ε≤|x−y|<1

Φk(x, y)− Φk(x, x)−∇yΦk(x, x) · (y − x)

|x− y|n+2s dy

+

∫
|x−y|≥1

Φk(x, y)− Φk(x, x)

|x− y|n+2s dy

)
dx

∣∣∣∣
≤ lim sup

ε→0

∫
x∈K

∫
ε≤|x−y|<1

|Φk(x, y)− Φk(x, x)−∇yΦk(x, x) · (y − x)|
|x− y|n+2s dydx

+ cn,s ‖Φk‖∞ |K|

≤ cn,s |K|

(
sup
|α|=2

‖∂αΦk‖∞ + ‖Φk‖∞

)
,

which tends to zero as k →∞. �

Lemma 7.5. For Φ ∈ C∞c (R2n), the function

ψ(x) = lim
ε→0

∫
|x−y|≥ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

is well defined as a continuous and compactly supported function on Rn.

Proof. Set ψε(x) =
∫
|x−y|≥ε

Φ(x,y)−Φ(x,x)

|x−y|n+2s dy. Let us prove that ψε is a Cauchy

sequence in the uniform norm on the compact K if K × Rn ⊇ supp Φ. In
fact, since

ψε(x) =

∫
|x−y|≥ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

=

∫
1>|x−y|≥ε

+

∫
|x−y|≥1

=

∫
1>|x−y|≥ε

Φ(x, y)− Φ(x, x)−∇yΦ(x, x) · (y − x)

|x− y|n+2s dy

+

∫
|x−y|≥1

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy,

for 0 < δ < ε < 1, se have

|ψδ(x)− ψε(x)| =
∣∣∣∣∫
|x−y|≥δ

−
∫
|x−y|≥ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

∣∣∣∣
≤
∫
δ≤|x−y|<ε

|Φ(x, y)− Φ(x, x)−∇yΦ(x, x) · (y − x)|
|x− y|n+2s dy

≤
∫
δ≤|x−y|<ε

sup
|α|=2

∥∥∂αy Φ
∥∥
∞
|x− y|2

|x− y|n+2sdy
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≤ cn,s sup
|α|=2

∥∥∂αy Φ
∥∥
∞ (ε2(1−s) − δ2(1−s))

for every x ∈ K. Hence ψε it converges to a continuous function supported
in K as ε→ 0. �

Proposition 7.6. For T , the distribution in Rn induced by the function
identically equal to one, and S as in Lemma 7.4, we have that for Φ ∈
C∞c (R2n)

KirΦ(x) = lim
ε→0+

∫
|x−y|≥ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

solves equation (1.2.b).

Proof. With ϕ ∈ C∞c (Rn) and Φ ∈ C∞c (R2n), equation (1.2.b) takes the
form∫

Rn
ϕ(x)KirΦ(x)dx = 〈〈S, ϕΦ〉〉

= lim
ε→0+

∫∫
Bcε

ϕ(x)Φ(x, y)− ϕ(x)Φ(x, x)

|x− y|n+2s dxdy

= lim
ε→0+

∫
Rn
ϕ(x)

(∫
|x−y|≥ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

)
dx

=

∫
Rn
ϕ(x)

(
lim
ε→0+

∫
|x−y|≥ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

)
dx

the last equation follows from Lebesgue dominated convergence theorem
and Lemma 7.5. �

8. Fractional Kirchhoff divergence on Ahlfors spaces

The case 0 < s < 1
2

in the previous section admits an extension to
Ahlfors regular metric spaces. Let us fix the basic notation. Let (X, d) be a
metric space and µ be a Borel measure on X such that there exist constants
0 < c1 ≤ c2 <∞, γ > 0, for which the inequalities

c1r
γ ≤ µ(B(x, r)) ≤ c2r

γ

hold for r > 0 and less than the diameter of X. The Hausdorff dimension
with respect to d of every ball in X is γ. Replacing now the smooth test
functions by compactly supported Lipschitz functions with respect to d, we
have analogous for Lemmas 7.1, 7.2 and Proposition 7.3, summarized in the
next statement.

Proposition 8.1. Let 0 < s < 1
2
, (X, d, µ) as before, S1 = Lip0(X), the

Lipschitz functions with bounded support in X, S2 = Lip0(X × X) the
Lipschitz functions with bounded support in X ×X. Then, for Φ ∈ S2,

(a) the function Φ(x,y)−Φ(x,x)
d(x,y)γ+2s belongs to L1(X ×X, dµ× dµ);
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(b) the linear functional S : S2 → R given by

〈〈S,Φ〉〉 =

∫∫
X×X

Φ(x, y)− Φ(x, x)

d(x, y)γ+2s
dµ(x)dµ(y)

defines a distribution in S
′
2 ;

(c) the function ψ(x) =
∫
X

Φ(x,y)−Φ(x,x)
d(x,y)γ+2s dµ(y) belongs to S1;

(d) for T = 1 and S as in (b) we have

KirT,SΦ(x) =

∫
X

Φ(x, y)− Φ(x, x)

d(x, y)γ+2s
dµ(y).

The proof follows the same lines of those in the first case in § 7. A partic-
ular case which is interesting as a link between discrete and continuous cases
is provided the dyadic settings introduced in § 3. Again, the situation could
be introduced for very general families but the one dimensional case with
the standard dyadic intervals provides all the ideas with a lower notational
cost. We shall take in Proposition 8.1 X = R+, the set of nonnegative real
numbers. Let D be the family of all dyadic intervals of R+, D =

⋃
j∈ZDj,

Dj = {Ijk : k = 0, 1, 2, . . .}, Ijk = [k2−j, (k + 1)2−j). As in Section 3, let
ρ(x, y) = inf{|I| : I ∈ D and x, y ∈ I}. As it is easy to see (R+, ρ, |·|), with
|·| Lebesgue measure, is an Ahlfors space of dimension one. In fact, since
Bρ(x, r) is the largest dyadic interval in R+ containing x with length less
than r, we have that for j ∈ Z such that 2j−1 < r ≤ 2j, we have also that
2j−1 ≤ |Bρ(x, r)| < 2j. Hence r

2
≤ |Bρ(x, r)| ≤ 2r. Hence Proposition 8.1

can be applied in this space (R+, ρ, |·|). It is worthy noticing that the indi-
cator functions of dyadic intervals are Lipschitz functions with respect to ρ
(see [AG18]). Moreover, in [ABG13] it is shown that if ∆s is the s Laplacian
in this setting, i.e. if

∆sf(x) =

∫
R+

f(y)− f(x)

ρ(x, y)1+2s
dxdy,

then a complete system of eigenfunctions of ∆s for L2(R+) is given by the

Haar system. In other words with cs = 22s

22s−1
we have

∆sh = cs |supph|−2s h,

for every h ∈H = {hjk(x) = 2j/2h0
0(2jx− k) : j ∈ Z, k ≥ 0} with h0

0(x) = 1
in [0, 1

2
) and h0

0(x) = −1 for x ∈ [1
2
, 1). This fact together with Proposi-

tion 8.1 give a formula for the Kirchhoff divergence in the dyadic setting
which we state in the next result.

Corollary 8.2. Let KirsΦ be the Kirchhoff divergence operator provided by
Proposition 8.1 on the 1-Ahlfors space (R+, ρ, |·|). Let H be the Haar basis
of L2(R+). Then

KirsΦ(x) = cs
∑
h∈H

∑
h̃∈H

∣∣∣supp h̃
∣∣∣−2s

〈〈Φ, h⊗ h̃〉〉h(x)h̃(x);
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where (h⊗ h̃)(x, y) = h(x)h̃(y) and

〈〈Φ, h⊗ h̃〉〉 =

∫∫
R+×R+

Φ(y1, y2)h(y1)h̃(y2)dy1dy2

and Φ belongs to the linear span of the orthonormal basis of L2(R+ × R+)

given by the tensor product H ⊗H = {h(x)h̃(y) : h, h̃ ∈H }.

Proof. Since Φ(x, y) =
∑

h,h̃∈H 〈〈Φ, h ⊗ h̃〉〉h(x)h̃(y) and the sum is finite,
then

KirsΦ(x) =

∫
R+

Φ(x, y)− Φ(x, x)

ρ(x, y)1+2s
dy

=
∑
h,h̃∈H

〈〈Φ, h⊗ h̃〉〉h(x)

∫
y∈R+

h̃(y)− h̃(x)

ρ(x, y)1+2s
dy

=
∑
h,h̃∈H

〈〈Φ, h⊗ h̃〉〉h(x)∆sh̃(x)

= cs
∑
h,h̃∈H

〈〈Φ, h⊗ h̃〉〉
∣∣∣supp h̃

∣∣∣−2s

h(x)h̃(x).

Notice that as in Section 6 the above formula is a spectral version of
∆s,yΦ(x, x) and the underlying distribution S in R+ × R+ is again ∆s,yµ
where µ is the length in the diagonal. �

Let us finally observe that the results in § 7 and § 8 can be extended to
the more general kernels that have been considered as natural settings for
some evolution equations of nonlinear variational type. See [CCV11] and
[CS14], where the regularity theory of solutions of the diffusion associated
to the Euler-Lagrange equation is considered. The generality of this type
of kernels which do not need to be of convolution type, fits naturally in the
general framework that we are considering. On the other hand, at least for
the basic aspects of the theory, they have natural extensions to Ahlfors type
metric spaces.

Let X = Rn, S1 = Cc(Rn), S2 = Cc(Rn × Rn). As in Section 7 we shall
consider T = 1 and the master kernel K will define the distribution S in
S
′
2 .
In [CCV11] the authors consider a symmetric kernel K defined on Rn×Rn

such that for some 0 < σ < 1 and for some positive constants c1 ≤ c2,
satisfies the inequalities

c1X{(x,y):|x−y|<1}(x, y)
1

|x− y|n+σ ≤ K(x, y) ≤ c2

|x− y|n+σ . (8.1)

With these estimates for the kernel K the arguments in the first case
(0 < s < 1

2
) in Section 7 can be adapted to find a distribution Sσ ∈ S

′
2 =

IMAL PREPRINT # 2020-0047
ISSN 2451-7100 
Publication date: October 5, 2020

Prep
rin

t



22

C∞c (R2n) such that KirT,Sσ(f(y)− f(x)) = ∆T,Sσ coincides with the oper-
ator

∫
Rn [f(y) − f(x)]K(x, y)dy which is the Euler-Lagrange equation with

quadratic energy
∫∫

Rn×Rn [f(x)− f(y)]2K(x, y)dxdy.
The above situation extends naturally to Ahlfors regular metric spaces.

With the notation of Section 8, let (X, d, µ) be a γ-Ahlfors space. In this
setting the upper bound in (8.1) takes the form

K(x, y) ≤ C

d(x, y)γ+σ
, x 6= y.

With similar arguments to those in Lemma 7.1 and Proposition 7.3 we
obtain the following result.

Proposition 8.3. Let 0 < σ < 1, (X, d, µ) γ-Ahlfors, Si, i = 1, 2, the Lip-
schitz functions with bounded support in X and X×X respectively. Let K :
X×X → R be a nonnegative measurable kernel satisfying (8.1). Then, with
〈T, ϕ〉 =

∫
X
ϕdµ and 〈〈Sσ,Φ〉〉 =

∫∫
X×X [Φ(x, y)−Φ(x, x)]K(x, y)dµ(x)dµ(y)

we have

KirT,SσΦ(x) =

∫
[Φ(x, y)− Φ(x, x)]K(x, y)dµ(y).

9. Some examples of (1.2.b) with T of positive order

So far we have considered examples of solutions of (1.2.b) where the
distributions T are given by measures. In this section we aim to provide
some examples with T of positive order in the sense of distributions.

A simple Schwartz distribution in R which is neither a function nor a
measure because it needs some positive regularity, aside of continuity, of the
test functions is the principal value of 1

x
. The relevance of this distribution

is that it is the kernel of the Hilbert transform. The paradigmatic singular
integral operator.

Usually the distribution p.v. 1
x

in D
′
(R) is defined by〈

p.v.
1

x
, ϕ

〉
= lim

ε→0

∫
|x|>ε

ϕ(x)

x
dx,

for ϕ ∈ C∞c (R). Since p.v. 1
x

extends to S (R) the class of Schwartz of
test functions it has a well defined Fourier transform which is a constant
times the sign function on the frequency domain. The convolution of
p.v. 1

x
with a test function η ∈ C∞c (R) is the Hilbert transform Hη(x) =

limε→0

∫
|x−y|>ε

η(y)
x−ydy.

The very definition of p.v. 1
x

allows to see this distribution as a limit,
in the sense of distributions, of a sequence of functions. In fact, for each
ε > 0, hε(x) = 1

x
X{|x|>ε}(x) belongs to L1

loc(R) and hence to D
′
. Moreover

hε
D
′
(R)−→ p.v. 1

x
. In our current situation the fact that each function hε has

a vanishing interval, namely [−ε, ε], is not good for our division problem.
The next elementary lemma gives a better adapted way of defining p.v. 1

x
.
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Lemma 9.1. Set hε = hε + σ
ε
X[−ε,ε], where σ is the sign function. Then

hε ∈ L1
loc(R) and hε → p.v. 1

x
in D

′
(R) as ε→ 0.

Proof. It is enough to show that σ
ε
X[−ε,ε]

D
′
(R)−→ 0. Let ϕ ∈ C∞c (R), then∫

R

σ(x)

ε
X[−ε,ε](x)ϕ(x)dx =

1

ε

∫ ε

0

ϕ(x)dx− 1

ε

∫ 0

−ε
ϕ(x)dx

which converges to ϕ(0)− ϕ(0) = 0 for ε→ 0, as desired. �

For positive ε, with the above notation, set, for Θ ∈ C∞c (R2)

〈〈Sε,Θ〉〉 =

∫∫
R2

Φ(x, y)hε(x− y)dxdy =

∫∫
|x−y|>ε

Φ(x, y)
1

x− y
dxdy.

Since hε(x − y) is bounded in R2, Sε is well defined as a distribution in
D
′
(R2). So that equation (1.2.b) with Tε the distribution in R induced by

the locally integrable and non-vanishing function hε, and Sε defined above
has the solution

KirεΦ(x) =
1

hε(x)

∫
{y:|x−y|>ε}

Φ(x, y)
1

x− y
dy (9.1)

for every ε > 0. Actually the above division of distributions is possible for
ε > 0 and the limit for ε tending to zero is well defined.

Proposition 9.2. For a two variable function Θ(x, y) set HyΘ(x, z) to
denote the Hilbert transform of θ for fixed x, as a function of y, evaluated
at z. Then

(i) KirεΦ(x)→ xHyΦ(x, x), for ε→ 0 for every x ∈ R;
(ii) for T = p.v. 1

x
and 〈〈S,Θ〉〉 =

∫
RHyΘ(x, x)dx we have that KirT,SΦ(x) =

xHyΦ(x, x).

Proof. (i). From equation (9.1) and the definition of hε, we have

KirεΦ(x) =
(
εσ(x)X{|x|≤ε}(x) + xX{|x|>ε}(x)

) ∫
{|x−y|>ε}

Φ(x, y)
dy

x− y
.

Since the sections of Φ belong to C∞c (R), we may take the limit for ε going
to zero to obtain (i).
(ii). We have to check (1.2.b) with T and S given in the statement. For
ϕ ∈ C∞c (R), we have

〈T, ϕ(x)xHyΦ(x, x)〉 = lim
ε→0

∫
|x|>ε

1

x
[ϕ(x)xHyΦ(x, x)]dx

= lim
ε→0

∫
|x|>ε

ϕ(x)HyΦ(x, x)dx

=

∫
R
ϕ(x)HyΦ(x, x)dx

=

∫
R
Hy(ϕΦ)(x, x)dx
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= 〈〈S, ϕΦ〉〉.
Hence

KirT,SΦ(x) = xHyΦ(x, x),

as desired. �

The corresponding Laplacian type operator is given by

∆T,Sf(x) = xHf(x)

with the standard agreement of H 1 = 0.

10. Some convergence results

The issue of convergence of a sequence KirkΦ; k = 0, 1, 2, . . . associated
to sequences Tk and Sk of distributions, presents several points of view and
several questions which could be of interest. Some of these aspects are
classical. Such is the case of approximation of “continuous” operators by
discrete operators. In this direction the example introduced in Proposi-
tion 2.3 of Section 2 is paradigmatic. Finite differences (graph structures)
approximating the classical Laplacian on Rn. Also the discrete fractional
Laplacian in Proposition 2.4 can be viewed as a discrete approximation of
the classical Laplacian. Less known and perhaps more difficult, but cer-
tainly more interesting looks the problem of searching the conditions on
sequences of graphs such that the corresponding Kirchhoff divergences, and
the corresponding Laplacians, converge to some operator worthy of being
considered a divergence or a Laplacian.

Let us first observe that the convergence of Tk and Sk in the sense of dis-
tributions of S

′
1 and S

′
2 respectively is not enough to have the convergence

of Kirk = KirTk,Sk as k tends to infinity. In fact, take for example in S (R)

the function η(x) = 1√
π
e−x

2
, the Gaussian function and ηk(x) = kη(kx). Set

Tk to denote the distribution in S
′
(R) induced by the integrable function

ηk. Let S = Sk be the Schwartz distribution in S
′
(R2) induced by the

area measure dxdy in R2, that is 〈〈Sk,Θ〉〉 =
∫∫

R2 Θ(x, y)dxdy, for every
k = 0, 1, 2, . . .. Then, for Φ ∈ S (R2) we have

KirkΦ(x) =
1

ηk(x)

∫
y∈R

Φ(x, y)dy =

√
π

k
ek

2x2

∫
y∈R

Φ(x, y)dy.

Which tends to zero when x = 0 and when x does not belong to the first pro-
jection of the support of Φ. And for Φ ≥ 0, tends to +∞ when

∫
Φ(x, y)dy

is positive. In terms of Proposition 4.1, what happens in this example is
that even when for each k we have that dx is absolutely continuous with
respect to ηk(x)dx, this is no longer true for the limit since ηk → δ0 as
k →∞ in the sense of S

′
(R).

On the other hand some simultaneous concentration of the measures
defining Tk and Sk could allow the existence of a limit. In fact, take Tk
as before and 〈〈Sk,Θ〉〉 =

∫∫
R2 Θ(x, y)ζk(x)dxdy, with ζk(x) = kζ(kx) and ζ

a probability density, i.e.
∫
R ζdx = 1.
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Now KirkΦ(x) = ζ(kx)
η(kx)

∫
y∈R Φ(x, y)dy, and the limit for k going to infinity

depends on the relative size of the tails of ζ with respect to the Gaussian
tails. Notice that KirkΦ(0) =

√
πη(0)

∫
y∈R Φ(0, y)dy and also that if ζ has

compact support then

lim
k→∞

KirkΦ(x) =

{√
πη(0)

∫
y∈R Φ(0, y)dy, x = 0;

0, for x 6= 0.

On the other hand if ζ has heavy tails, like Cauchy distributions, then for
x 6= 0, KirkΦ(x) tends to infinity, when x belongs to the first projection of
the support of Φ and Φ ≥ 0 and has positive integral.

With the notation of Section 4, we have more interesting convergence
cases when Tk approaches δ0 in R with some specific rate and the measure
Πk in R2 concentrates, with decreasing mass, about the diagonal of R2. Let
us write an elementary case of this observation in the next statement.

Proposition 10.1. Let P (x) = 1
π

1
1+x2 , Pk(x) = kP (kx), k = 1, 2, 3, . . .

and 〈Tk, ϕ〉 =
∫
R ϕ(x)Pk(x)dx. Let Πk be the measure defined on the Borel

sets of R2 by Πk(A) =
∫∫

A
X

[− 1
k
,
1
k

]
(x − y)dxdy. Set 〈〈Sk,Θ〉〉 =

∫∫
R2 ΘdΠk.

Then,

lim
k→∞

KirkΦ(x) = 2πx2Φ(x, x).

Proof. Let us first write out KirkΦ for k = 1, 2, 3, . . . Since Pk(x) never
vanishes we have that

KirkΦ(x) =
1

Pk(x)

∫
y∈R

Φ(x, y)X
[− 1
k
,
1
k

]
(x− y)dy

=
π

k
(1 + k2x2)

∫ x+
1
k

x− 1
k

Φ(x, y)dy

= 2π

(
1

k2
+ x2

)
k

2

∫ x+
1
k

x− 1
k

Φ(x, y)dy.

The result follows taking the limit for k →∞. �

Notice that Sk → 0 = S and Tk → δ0 = T in the sense of distributions
and KirT,SΦ = 0 for every Φ. Hence the operator that applies Φ(x, y)
into 2

π
x2Φ(x, x), obtained as a limit of this singular situation can be seen

as a generalization of the Kirchhoff divergence in this case. The formal
Laplacian, instead, vanishes since f(y) − f(x) is zero on the diagonal. On
the other hand the exact value of the limit in the above proposition depends
on the relative rates of convergence of Tk to δ0 and of Sk to 0. If instead of
the Cauchy density, or Poisson kernel, in Proposition 10.1 we use the Gauss
kernel ηk(x) = 1√

π
e−k

2x2
, then a faster convergence of Sk to zero is needed

if we want to have a nontrivial limit.
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The above considerations suggest that we are dealing with a notion of
derivative depending on the rates of convergence of Sk and Tk. Let us go
back to a (continuous) parameter h tending to zero instead of 1

k
for k →∞.

In our general setting stated in Section 1, let T : (−ε, ε) → S
′
1 and

S : (−ε, ε) → S
′
2 be two distributions valued functions defined for each h

with |h| < ε. Let Σ(Φ, h) be the distribution in S
′
1 associated to Φ ∈ S2

and S(h) by Lemma 1.1. That is 〈Σ(Φ, h), ϕ〉 = 〈〈S(h), ϕΦ〉〉. We say that
S is differentiable with respect to T at Φ ∈ S2 if for some ε > 0 the

quotients Q(Φ, h) = Σ(Φ,h)
T (h)

are well defined as objects of S
′
1 for |h| < ε

and Q(Φ, h) → dS
dT (Φ) ∈ S

′
1 in the sense of S

′
1 , as h tends to zero. Some

examples of existence and identification of these objects are in order.

Theorem 10.2. The basic setting is that of Proposition 2.3, S1 = Cc(Rn),
S2 = Cc(Rn × Rn). Set T : (0, 1) → S

′
1 given by T (h) = h2

∑
~j∈Zn h

nδh~j.

Set S : (0, 1)→ S
′
2 given by S(h) =

∑
~k∈Zn

∑
{~j:|~j−~k|=1} h

nδh~k × δh~j. Then,

for Φ ∈ C 2(Rn × Rn) vanishing on the diagonal we have

dS
dT

(Φ) = ∆yΦ(x, x).

Moreover,
dS
dT

(f(y)− f(x)) = ∆f,

for f in C 2(Rn).

Proof. We have that for positive h,

Q(Φ, h) =
Σ(Φ, h)

T (h)
= KirhΦ.

To check the convergence in S
′
1 of Q(Φ, h), with Φ ∈ C 2(R2n), take a test

function ϕ ∈ S1 = Cc(Rn), then from Proposition 2.3, we have

〈Q(Φ, h), ϕ〉 = 〈KirhΦ, ϕ〉

=
∑
~k∈Zn

(
1

h2

n∑
m=1

[Φ(h~k, h(~k + ~em)) + Φ(h~k, h(~k − ~em))]

)∫
Q(h~k)

ϕ(x)dx

=
∑
~k∈Zn

(
n∑

m=1

[Φ(h~k, h(~k + ~em))− 2Φ(h~k, h~k) + Φ(h~k, h(~k − ~em))]

h2

)∫
Q(h~k)

ϕ(x)dx.

In the second equation above we are taking the continuous variable ver-
sion of KirhΦ provided in Proposition 2.3. In other words KirhΦ(x) =∑

~k∈Zn Kirh(h
~k)XQ(h~k)(x), where Q(h~k) =

∏n
m=1[hkm, h(km + 1)]. Since Φ

is C 2(R2), from Taylor formula in the y variables for Φ and letting h tend
to zero we get

〈Q(Φ, h), ϕ〉 →
∫
x∈Rn

∆yΦ(x, x)ϕ(x)dx
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as h → 0 for every ϕ ∈ Cc(Rn). Hence dS
dT (Φ) for Φ ∈ C 2(Rn × Rn) is the

continuous function ∆yΦ(x, x). �

A second case of dS
dT which has an explicit formula is the associated to

Proposition 2.4, 7.3 and 7.6 regarding fractional powers of the Laplacian.

Theorem 10.3. Let α > 0, S1 = Cc(Rn), S2 = Cc(Rn × Rn) and T :
(0, 1)→ S

′
1 given by T (h) = hα

∑
~k∈Zn h

nδh~k. Let S : (0, 1)→ S
′
2 given by

S(h) =
∑
~k 6=~j

h2n 1∣∣∣h~k − h~j∣∣∣n+α δ(h~k,h~j).

Then for 0 < α < 2 and Φ ∈ S2 vanishing on the diagonal and smooth we
have

∂S
∂T

(Φ) = (−∆)
α
2
y Φ(x, x).

Proof. For h > 0 fixed we have that

Q(Φ, h) =
Σ(Φ, h)

T (h)
(x) =

∑
~k∈Zn

XQ(h~k)(x)

 1

hα

∑
~j 6=~k

Φ(h~k, h~j)∣∣∣h~k − h~j∣∣∣n+α

 ,

from Proposition 2.4. Take ϕ ∈ S1 = Cc(Rn), then

〈Q(Φ, h), ϕ〉 =
∑
~k∈Zn

∑
~j 6=~k

Φ(h~k, h~j)− Φ(h~k, h~k)∣∣∣h~k − h~j∣∣∣n+α hn

∫
Q(h~k)

ϕdx

=

∫
Rn
ϕ(x)

∑
~k∈Zn

∑
~j 6=~k

Φ(h~k, h~j)− Φ(h~k, h~k)∣∣∣h~k − h~j∣∣∣n+α hn

XQ(h~k)(x)dx

=

∫
Rn
ϕ(x)

∑
~k∈Zn

σkXQ(h~k)(x)dx.

For fixed ~k ∈ Zn and small h > 0, let us divide the inner sum σk in two
parts: σhk = σh1

k + σh2
k . Take

σh1
k =

∑
{~j:0<|~j−~k|< 1

h
}

Φ(h~k, h~j)− Φ(h~k, h~k)∣∣∣h~k − h~j∣∣∣n+α hn

=
∑

{~j:0<|~j−~k|< 1
h
}

hn
Φ(h~k, h~j)− Φ(h~k, h~k)−∇yΦ(h~k, h~k) · (~j − ~k)h∣∣∣h~k − h~j∣∣∣n+α

+
∑

{~j:0<|~j−~k|< 1
h
}

hn∇yΦ(h~k, h~k) · (h~j − h~k)∣∣∣h~k − h~j∣∣∣n+α
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= σh1,1
k + σh1,2

k .

Since Φ is of class C 2 and has bounded support, 0 < α < 2 and ϕ is
continuous with compact support, then, the function of x and y given by

X{|x−y|<1}(x, y)ϕ(x)
Φ(x, y)− Φ(x, x)−∇yΦ(x, x) · (y − x)

|x− y|n+α

is absolutely integrable in R2n. See the arguments in Lemma 7.4 above.
Moreover the above function of (x, y) ∈ R2n is continuous except on the
diagonal x = y and on |x− y| = 1. Hence we can approximate its double
integral on R2n through Riemann sums. So that∫

Rn
ϕ(x)

∫
|x−y|<1

Φ(x, y)− Φ(x, x)−∇yΦ(x, x) · (y − x)

|x− y|n+α dydx

= lim
h→0+

∑
~k∈Zn

ϕ(h~k)
∑

0<|h~k−h~j|<1

Φ(h~k, h~j)− Φ(h~k, h~k)−∇yΦ(h~k, h~k) · (~j − ~k)h∣∣∣h~k − h~j∣∣∣n+α h2n

= lim
h→0+

∫
Rn
ϕ(x)

∑
~k∈Zn

XQ(h~k)(x)

·

 ∑
0<|~j−~k|< 1

h

hn
Φ(h~k, h~j)− Φ(h~k, h~k)−∇yΦ(h~k, h~k) · (~j − ~k)h∣∣∣h~k − h~j∣∣∣n+α

 dx

= lim
h→0+

∫
Rn
ϕ(x)

∑
~k∈Zn

σh1,1
k XQ(h~k)(x)dx.

Hence, since Φ(x, x) = 0 and since the integral on a ball centered at x of
radius yi−xi

|x−y|n+α vanishes for all i = 1, . . . , n, we have

lim
h→0+

∫
Rn
ϕ(x)

∑
~k∈Zn

σh1,1
k XQ(h~k)(x)dx

=

∫
x∈Rn

ϕ(x)

∫
|x−y|<1

Φ(h~k, h~j)− Φ(h~k, h~k)−∇yΦ(h~k, h~k) · (~j − ~k)h∣∣∣h~k − h~j∣∣∣n+α dydx

=

∫
x∈Rn

ϕ(x)

(∫
|x−y|<1

Φ(x, y)

|x− y|n+αdy

)
dx.

Let us consider the term σh1,2
k . Notice that

σh1,2
k = hn∇yΦ(h~k, h~k) ·

∑
0<|~j−~k|< 1

h

h~j − h~k∣∣∣h~j − h~k∣∣∣n+α

= h1−α∇yΦ(h~k, h~k) ·
∑

0<|~i|< 1
h

~i

|~i|n+α
.
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Since for ~i ∈ Zn with 0 < |~i| < 1
h

we have that −~i satisfies the same

condition, we have that the last sum is the zero vector in Rn and σh1,2
k = 0,

for every ~k and for every h > 0.
Let us now consider the convergence for σh2

k . We have to prove that

lim
h→0+

∫
Rn
ϕ(x)

∑
~k∈Zn

XQ(h~k)

 ∑
|~j−~k|> 1

h

hn
Φ(h~k, h~j)∣∣∣h~k − h~j∣∣∣n+α

 dx

=

∫
Rn
ϕ(x)

∫
{y:|x−y|≥1}

Φ(x, y)

|x− y|n+αdydx.

But this fact is again a consequence of the continuity and support properties
of Φ and ϕ. Hence we have

lim
h→0+

〈Q(Φ, h), ϕ〉 =

∫
Rn
ϕ(x)

(∫
y∈Rn

Φ(x, y)

|x− y|n+αdy

)
dx

=

∫
Rn
ϕ(x)(−∆α)yΦ(x, x)dx,

as desired. �

Even when the above results are reformulations of known methods of
approximation by finite differences of integer and fractional differential op-
erators, the existence of dS

dT for the functions S(h) and T (h) given by graphs,
could be of help at understanding the diffusion processes on such structures.

As a final example let us compute the derivative dS
dT for some deterministic

coupled measures. For the sake of simplicity we choose a very elementary
case of a certainly more general situation.

Proposition 10.4. Let X = [0, 1] with S1 and S2 the spaces of continuous
functions on X and X × X respectively. Let F = F (h, x) be, for each
h ∈ [0, 1], a function from [0, 1] into itself. Assume that F is differentiable
and that F (0, x) = x, the identity on [0, 1]. Let T (h) be the measure µ with
dµ = dx defined on [0, 1]. Let πh be the measure defined on the Borel sets
of [0, 1]2 by πh = µ ◦ G−1

h with Gh : [0, 1] → [0, 1]2, is given by Gh(x) =
(x, F (h, x)). In other words πh(A) = µ({x : Gh(x) ∈ A}). Set S(h) to
denote the distribution induced by πh on S2. Let Φ ∈ S2 be a smooth
function vanishing on the diagonal. Then dS

dT (Φ) exists and is the function
in [0, 1] given by

dS
dT

(Φ)(x) =
∂F

∂h
(0, x)

∂Φ

∂y
(x, x).

Proof. For h > 0 fixed we have

h

∫
[0,1]

ϕ(x)ψh(x)dx = 〈T (h), ϕψh〉

= 〈〈S(h), ϕΦ〉〉
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=

∫∫
[0,1]2

ϕ(x)Φ(x, y)dπh(x, y)

=

∫
[0,1]

ϕ(x)Φ(x, F (h, x))dx,

for every ϕ ∈ C ([0, 1]). Then, Q(Φ, h) = ψh is the function

Q(Φ, h) =
1

h
Φ(x, F (h, x))

=
1

h
[Φ(x, F (h, x))− Φ(x, x)]

=
Φ(x, F (h, x))− Φ(x, F (0, x))

h
.

And the result follows by taking limh→0Q(Φ, h). �

An example of the above is provided by the approximation F (h, x) = x1+h

of the diagonal of [0, 1]2. In this case

dS
dT

(Φ)(x) = x log x
∂Φ

∂y
(x, x).
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