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BOUNDEDNESS OF OPERATORS RELATED TO A

DEGENERATE SCHRÖDINGER SEMIGROUP

E. HARBOURE, O. SALINAS, AND B. VIVIANI

Abstract. In this work we search for boundedness results for operators re-

lated to the semigroup generated by the degenerate Schrödinger operator
Lu = − 1

ω
div A · ∇u + V u, where ω is a weight, A is a matrix depending

on x and satisfying λ ω(x)|ξ|2 ≤ A(x)ξ · ξ ≤ Λ ω(x)|ξ|2 for some positive con-

stants λ, Λ and all x, ξ in Rd, assuming further suitable properties on the
weight ω and on the non-negative potential V . In particular, we analyze the

behaviour of T ∗, the maximal semigroup operator, L−α/2, the negative pow-

ers of L, and the mixed operators L−α/2V σ/2 with 0 < σ ≤ α on appropriate
functions spaces measuring size and regularity. As in the non degenerate case,

i.e. ω ≡ 1, we achieve these results by first studying the case V = 0, obtaining

also some boundedness properties in this context that we believe are new.

1. Introduction

In 1982, Fabes, Kenig and Serapioni (see [FKS]) studied the following second
order degenerate elliptic differential operator in divergence form

L0 u = − 1

ω
div A · ∇u,

where ω is a weight belonging to the Muckenhoupt class A2, that is, ω satisfies(
1

ω(B)

ˆ
B

ω

)(
1

ω(B)

ˆ
B

ω−1
)
≤ C

for some fix constant C and any ball B.
Also, A(x) is a d× d real and symmetric matrix such that for all ξ ∈ Rd

λ ω(x)|ξ|2 ≤ A(x)ξ · ξ ≤ Λ ω(x)|ξ|2, λ > 0.

Under that assumption on the weight, the entries of A(x) are functions that vanish
at most on a set of measure zero. When ω ≡ 1, we recover the case of an uniformly
elliptic operator in divergence form.

Several years later, in [D], Dziubanski considered the associate Schrödinger op-
erator, namely

Lu = L0u+ V u ,

where the potential V is a non-negative locally integrable function with respect to
the measure dµ = ωdx.

He also assumes additional conditions on ω and V . For a better understanding,
let us remind that any A∞ weight, so in particular an A2 weight, satisfies a doubling
and a reverse doubling condition. More precisely, there exist two numbers ν and
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2 E. HARBOURE, O. SALINAS, AND B. VIVIANI

γ, 0 < ν ≤ d ≤ γ, such that for and any ball B(x, r) and t > 1, the following
inequalities hold

(1) c tν ≤ ω(B(x, tr))

ω(B(x, r))
≤ C tγ ,

for some constants independent of the point x. Although for an A2 weight over
Rd the doubling index must be smaller than 2d, there is not a lower bound for
the reverse doubling coefficient ν. In fact, straightforward calculations show that
ω(x) = |x|α−d is in A2 when 0 < α < 2d but with lower index α. When the
inequality on the left is satisfied we say ω ∈ RDν , while, if the other holds, we
write ω ∈ Dγ .

With this in mind, following [D], we further assume that ω is reverse doubling
for some index ν > 2 and hence d and γ must also be greater than two. We often
refer to this assumption saying that ω ∈ RDν ∩Dγ with ν > 2.

Let us say one more word about that assumption. In [FJK], the authors show
that the fundamental solution Γ0 of the differential operator L0 in a ball behaves
like

Γ0(x, y) '
ˆ R

|x−y|

s2

ω(B(x, s))

ds

s
.

Therefore, if ω ∈ RDν with ν > 2, it follows that

Γ0(x, y) ≤ C|x− y|ν

ω(B(x, |x− y|))

ˆ R

|x−y|
s2−ν

ds

s
≤ C|x− y|2

ω(B(x, |x− y|))
.

Since it is clear that the last quantity is also a lower bound for Γ0 we get

Γ0(x, y) ' C|x− y|2

ω(B(x, |x− y|))
.

In this way, the assumption ν > 2 allows to know the precise size of the singularity
of Γ0 at the diagonal.

As for the potential V , we additionally assume that it belongs to a reverse-Hölder
class of order q, denoted as RHq(ω), for some q > γ/2, where γ is such that ω ∈ Dγ .
We remind that V ∈ RHq(ω) means that there is a constant such that(

1

ω(B)

ˆ
B

V q ω

)1/q

≤ C 1

ω(B)

ˆ
B

V ω,

for any ball B in Rd. Let us remark that, following [D], the above condition on V
allows to define a critical radius function as it was done in the case w ≡ 1 (see [Sh]
and [K]), namely

(2) ρ(x) = sup

{
r :

r2

ω(B(x, r))

ˆ
B(x,r)

V ω ≤ 1

}
.

It turns out that 0 < ρ(x) < ∞ for any x and it further satisfies the following
crucial property: there exist positive constants c1 c2 and N0 such that

(3) c1

(
1 +
|x− y|
ρ(x)

)−N0

ρ(x) ≤ ρ(y) ≤ c2 ρ(x)

(
1 +
|x− y|
ρ(x)

)N0/N0+1

.

Both differential operators, L and L0, are non-negative and selfadjoint with
respect to the measure dµ = ωdx and they generate semigroups of selfadjoint linear

IMAL PREPRINT # 2021-0051
ISSN 2451-7100 
Publication date: March 17, 2021

Prep
rin

t



BOUNDEDNESS OF NEGATIVE POWERS... 3

operators on L2(dµ), {St}t>0 and {Tt}t>0 with symmetric kernels denoted ht(x, y)
and kt(x, y) respectively. Moreover, by a perturbation argument, they satisfy

0 ≤ kt(x, y) ≤ ht(x, y).

Further estimates on the size and regularity of these kernels have been proved
as well as on their difference (see [D] and [HLL]). We state them all in the next
section.

The aim of this paper is to obtain norm-inequalities for some operators related
to both semigroups under the stated assumptions on ω and V . More precisely, we
shall be concerned with negative powers of L and L0 and with the corresponding
maximal operators of their generated semigroups. Besides, for the Schrödinger case,
we shall also consider the operators L−α/2V σ/2 for 0 < σ ≤ α < ν. We shall study
their behavior on suitable size spaces as well as on regularity spaces.

For the fractional operators L−α/20 and L−α/2 we will show that Lebesgue spaces
Lp(ω) are, in general, non-appropriate. Rather, we shall introduce some kind of
“mixed” Morrey spaces, combining the distance and the weight that, needless to
say, coincide with Lebesgue spaces when ω ≡ 1. Regarding smoothness spaces, and
for the operators related to L0, we will prove boundedness over BMO and Lipschitz
spaces corresponding to the space of homogeneous type (Rn, |.|, ωdx) that, under
mild assumptions on ω, are the same as the classical BMO(dx) and Λβ(dx) (see
for example [MW]). For the Schrödinger case we use appropriate subspaces, adding
a condition on averages over critical balls, that is, balls of the type B(x, ρ(x)),
similarly to the non-degenerate case.

The organization of the paper is as follows.
We start with a series of results involving some estimates for the kernels of the

semigroups as well as other known inequalities that will be essential to our work.
Then, we analyze the behaviour of all mentioned operators when acting on size

spaces. Even Lp(ω) are the natural spaces for the maximal semigroup operators,
it is not longer the case for the negative powers of the differential operators. This
issue is discussed in Section 3 and new and suitable spaces are introduced, noted as
Mλ
p (ω), proving some relationships with weighted Lebesgue spaces. In particular

we show that if ω ∈ RDν and doubling, bounded functions with compact support
are in Mν

p (ω), 1 ≤ p ≤ ∞. As we noticed above, being our weight in A2, it also
belongs to RDν for some ν and hence we make sure that this particular space,
Mν
p (ω), contains enough functions. Besides, since ω ∈ RDν implies ω ∈ RDλ for

λ < ν we have that Mλ
p (ω) are non-trivial for all such values of λ.

Next, we study the behaviour of S∗ and negative powers of L0 on BMO and

regularity spaces. Besides, we prove that L−α/20 can be extended to be a bounded

operator from Mα−β
1 (ω) into BMO when β = 0 and into Lipschitz spaces of order

β otherwise. When ω ≡ 1, the space Mα
1 contains Ld/α and even more its weaker

version, so that we recover the classical result for fractional integrals associate to
the Laplacian operator showing, somehow, that these new size spaces are suitable
substitutes of Lebesgue spaces in this context.

We devote the next section to present a general theorem on boundedness of
operators on BMOρβ(ω), the regularity spaces adapted to the Schrödinger situation

(see the precise definition at the beginning of Section 5). Such result is similar to
Theorem 1.1 in [MSTZ] with some minor differences. With this tool at hand, we
obtain regularity results for T ∗, L−α/2 and L−α/2V σ/2 with α ≥ σ.
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4 E. HARBOURE, O. SALINAS, AND B. VIVIANI

2. Preliminaries

As mentioned, the semigroups generated by L0 and L, that we call {St}t>0 and
{Tt}t>0 respectively, are, for each t > 0, integral operators given by kernels, denoted
as ht(x, y) and kt(x, y), in the sense that

Stf(x) =

ˆ
Rd
ht(x, y)f(y)ω(y)dy and Ttf(x) =

ˆ
Rd
kt(x, y)f(y)ω(y)dy.

In the following Lemma we collect some known estimates for ht and kt, as well
as for their difference qt = ht − kt. We will give references for each of them.

Lemma 1. Suppose ω ∈ RDν ∩Dγ ∩ A2 , 2 < ν ≤ γ and V satisfying a RHq(ω)
condition with q > γ/2. Then the following estimates hold:

(a) There exist constants c and C such that

0 ≤ ht(x, y) ≤ C e−
|x−y|2
ct

ω(B(x,
√
t))
.

(b) If |x− z| ≤ |x− y|/4, for some 0 < η ≤ 1 we have

|ht(x, y)− ht(z, y)| ≤ C min

{
1,

(
|x− z|√

t

)η}
e−
|x−y|2
ct

ω(B(x,
√
t))
.

(c) For each N ≥ 0 there is a constant CN such that

0 ≤ kt(x, y) ≤ CN
e−
|x−y|2
ct

ω(B(x,
√
t))

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N
.

(d) There exists δ0 > 0 such that

|qt(x, y)| ≤ C min

{
1,

( √
t

ρ(x)

)δ0}
e−
|x−y|2
ct

ω(B(x,
√
t))
.

(e) for any δ < min {η, δ0}, there exists a constant C such that

|qt(x, y)− qt(z, y)| ≤ C
(
|x− z|
ρ(x)

)δ
e−
|x−y|2
ct

ω(B(x,
√
t))
,

provided |x− z| < |x− y|/4 and |x− z| ≤ ρ(x).
(f) For any given δ < min {δ0, η}, there is a constant C such that

|kt(x, y)− kt(z, y)| ≤ CN
(
|x− z|√

t

)δ
e−
|x−y|2
ct

ω(B(y,
√
t))

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N
,

provided |x− z| ≤ |x− y|/8.

All of the above estimates are already known. Items a) and b) are referred in
[D] and are consequence of Theorems 2.7, 2.3, 2.4 and Corollary 3.4 of [HS-C].
Estimates given in c) and d) can be found in [D]. Finally, proofs of e) and f) are
provided in [HLL] (see Propositions 3.1 and 3.2 therein).

Remark 1. We observe that since both the kernels are symmetric we can change x
by y on any of the above estimates. Also, using the size condition given in d), it is
very simple to check that e) holds for |x− z| < 2ρ(x).
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BOUNDEDNESS OF NEGATIVE POWERS... 5

3. Boundedness results on Lp(ω) and Mp
λ(ω)

Boundedness on Lp(ω) of the semigroup maximal operators S∗ = supt>0 St and
T ∗ = supt>0 Tt are known. In fact they are an easy consequence of Lemma 1 a)
and c) since both are controlled by

U∗f(x) = sup
t>0

ˆ
Rn

e−
|x−y|2

t

ω(B(x,
√
t))
f(y)ω(y) dy.

If we divide the integral as B(x,
√
t)∪

(⋃
k≥0B(x, 2k+1

√
t) \B(x, 2k

√
t)
)

, it is easy

to see that U∗f(x) is bounded by Mωf(x), the maximal function with respect to
the measure ωdx, that is,

Mωf(x) = sup
B3x

1

ω(B)

ˆ
B

|f(y)|ω(y) dy.

As it is well known, Mω is bounded on Lp(ω) if 1 < p ≤ ∞ and of weak type
(1, 1) with respect to ωdx, provided ω is doubling.

Therefore, the following result holds.

Theorem 1. Let ω be a A2-weight such that ω ∈ RDν ∩Dγ with ν > 2. Then we
have:

(a) S∗ is bounded on Lp(ω) if 1 < p ≤ ∞ and of weak type (1, 1) with respect
to ωdx.

(b) If V ∈ RHq(ω) for q > γ/2 the above properties also hold for T ∗.

Remark 2. Let us point out that when 1 < p ≤ ∞ the above result is a consequence
of the maximal theorem proved by Stein in a general frame of semigroups. We refer
the reader to [St].

Regarding fractional integral operators, they can be written in terms of the
semigroup as follows

L−α/20 f(x) =

ˆ ∞
0

Stf(x) tα/2
dt

t
,

and in a similar way for L−α/2. Thus, their kernels are given by

(4) Hα(x, y) =

ˆ ∞
0

ht(x, y) tα/2
dt

t

and

(5) Kα(x, y) =

ˆ ∞
0

kt(x, y) tα/2
dt

t
,

respectively. Again, by Lemma 1 a) and c), analyzing the behaviour over size spaces
of the following fractional operator

Jαf(x) =

ˆ
Rn

|x− y|α

ω(B(x, |x− y)|)
f(y)ω(y)dy,

will give us information for the negative powers of L−α/20 and L−α/2. In fact the
following estimates hold. We point out that the second estimate below was also
proved in [L] for 0 < α ≤ 2.

Lemma 2. Let ω be a A2-weight such that ω ∈ RDν ∩Dγ with ν > 2. Then, for
0 < α < ν, we have:
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6 E. HARBOURE, O. SALINAS, AND B. VIVIANI

(a)

(6) 0 ≤ Hα(x, y) ≤ C |x− y|α

ω(B(x, |x− y)|)
.

(b) Further, if V ∈ RHq with q > γ/2,

0 ≤ Kα(x, y) ≤ CN
|x− y|α

ω(B(x, |x− y|))

(
1 +
|x− y|
ρ(x)

)−N
,

for any positive N .

.

Proof. To prove the estimate for Hα, according to expression 1, it will be enough
to check ˆ ∞

0

e−
|x−y|2
ct

ω(B(x,
√
t))

tα/2
dt

t
≤ C |x− y|α

ω(B(x, |x− y)|)
.

To see the above inequality, we make the change of variable t = |x− y|2s arriving
at the bound

|x− y|α
ˆ ∞
0

sαe−1/s
2

ω(B(x,
√
s|x− y|))

ds

s
.

Now, dividing the integration from 0 to 1 and from 1 to ∞, and applying the
Dγ and RDν conditions in each case we are led to

|x− y|α

ω(B(x, |x− y)|)

(ˆ 1

0

s(α−γ)/2e−1/s
2 ds

s
+

ˆ ∞
1

s(α−ν)/2
ds

s

)
,

and both integrals are convergent since α < ν.
Next, to prove the estimate for Kα we use expression (5) and Lemma 1 item (b).

Proceeding as above, after changing variables, we get

|x− y|α
ˆ ∞
0

sαe−1/s
2

ω(B(x,
√
s|x− y|))

(
1 +

√
s|x− y|
ρ(x)

)−N
ds

s
.

Now we use that

1 +

√
s|x− y|
ρ(x)

≥ c
(

1 +
|x− y|
ρ(x)

)
min

{
1,
√
s
}
,

which follows easily considering s < 1 and s ≥ 1. Now, using the same estimates
as before we obtain the bound

|x− y|α

ω(B(x, |x− y)|)

(
1 +
|x− y|
ρ(x)

)−N (ˆ 1

0

s(α−γ−N)/2e−1/s
2 ds

s
+

ˆ ∞
1

s(α−ν)/2
ds

s

)
,

that gives the stated inequality since α < ν. �

Te next proposition shows that Lebesgue spaces may not be the appropriate
spaces for Jα.

Proposition 1. Suppose ω is doubling and Jα maps continuously Lp(ω) into Ls(ω)
with s > p, then the measure ωdx is lower-Ahlfors, i.e., there exists a positive
number λ such that

(7) Crλ ≤ ω(B(x, r))

for some constant C independent of x.
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BOUNDEDNESS OF NEGATIVE POWERS... 7

Proof. Fix a ball B(x, r) and take as f the characteristic of the ring B(x, 3r) \
B(x, 2r). Since ω is doubling, ω(B(x, 3r) \ B(x, 2r)) ' ω(B(x, r). Therefore, for
z ∈ B(x, r) we have

Jαf(z) ≥ Crα.
Thus, by the continuity assumption

C (ω(B(x, r)))
1/s

rα ≤ ‖Jαf‖s ≤ C ′ (ω(B(x, r)))
1/p

,

and hence

rα ≤ C (ω(B(x, r)))
1/p−1/s

,

which gives the desired result since s > p. �

Remark 3. The converse statement is also true. More precisely, if ω is doubling and
satisfies (7), then Jα maps continuously Lp(ω) into Ls(ω) with 1/s = 1/p − α/λ.
In fact, it is a consequence of the results in [BS] since, under the assumption (7),
Jα is clearly dominated by the fractional integral in the space of homogeneous type
(Rd, |.|, ωdx) appearing there.

Let us introduce the following size spaces: given a doubling weight ω, 1 ≤ p <∞,
and λ > 0 we say that a measurable function belongs to Mλ

p (ω) if

(8) ‖f‖Mλ
p (ω)

= supB=B(x,r)

(
rλ

ω(B)

ˆ
B

|f |pω
)1/p

<∞.

When p = ∞ the limiting space is that of a.e. bounded functions, so we define
Mλ
∞(ω) = L∞

It is clear that the above quantity is a norm and it coincides with the standard
Lp-norm when ω ≡ 1 and λ = d. More generally, if the weight is Ahlfors of order
λ, that is, rλ ' ω(B(x, r)), we have Mλ

p (ω) = Lp(ω).

We also notice that if the weight is just lower-Ahlfors of order λ, only Mλ
p (ω) ⊃

Lp(ω) holds. Nevertheless, not any weight that satisfies ω ∈ A2 ∩ RDν for some
ν > 2 is necessarily lower Ahlfors, for example ω(x) = |x|d−β with d < β <
2d. To check that is not lower Ahlfors we just observe that for |x| > 2 we have
ω(B(x, 1)) ' |x|d−β , which goes to zero when |x| tends to infinity. Since we do
not want to strengthen our assumptions on ω, the following question arises: are
there non-trivial functions in the above spaces?. We shall see that, in fact, Mν

p (ω)
contains many functions if we just assume that ω ∈ RDν and is doubling.

Proposition 2. Bounded functions with compact support belong to Mν
p (ω) as long

as ω ∈ RDν and is doubling.

Proof. We may assume that suppf ⊂ B(0, R) with R ≥ 1. Let B = B(x, r) be a
ball. To check that (8) holds we consider different cases.

Case 1: If |x| > 2R and r < |x|/2, B(x, r) ∩ suppf = ∅ and
´
B
|f |pω = 0.

Case 2 : If |x| > 2R and r ≥ |x|/2 we have B(x, r) ⊂ B(0, 3r) ⊂ B(x.5r) and
hence ω((B(x, r)) ' ω(B(0, r)) ≥ Crνω(B(0, 1)), where we used that ω is doubling
and in RDν . In this way

rν

ω(B(x, r))

ˆ
B(x,r)

|f |pω ≤ C
ˆ
B(0,3r)

|f |pω ≤ C‖ f‖pLp(ω).

Case 3: If |x| ≤ 2R and r ≤ R we just use that f is bounded.
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8 E. HARBOURE, O. SALINAS, AND B. VIVIANI

Case 4: If |x| ≤ 2R and r > R ≥ 1 we have ω(B(x, r)) ≥ Crν ω(B(x, 1)), and
then

rν

ω(B(x, r))

ˆ
B(x,r)

|f |p ω ≤ C

ω(B(x, 1))
||f ||pLp(ω).

However, being ω(B(x, 1)) a positive and continuous function of x, we have that,for
some constant c > 0, ω(B(x, 1)) ≥ c over the compact set {|x| ≤ 2R}.

�

Remark 4. Let us notice that when ω = 1 and p = 1 the above spaces for 0 < λ < d
turn out to be the Morrey spaces as appearing in [A] (see also [M]) and it is just L1

for λ = d. If we do not have any information on the weight probably many of the
spaces might be trivial. The above result shows that when ω ∈ RDν that is not the
case for the specific spaces Mν

p (ω). Moreover, since ω ∈ RDν implies ω ∈ RDλ for
0 < λ < ν, we will have that bounded functions with compact support also belong
to Mλ

p (ω). Nevertheless we remind that there may be not an optimal exponent for
the reverse doubling condition.

Now we turn our attention to the boundedness of Jα. The result we state could
be derived as a consequence of continuity properties of a larger family of operators
over more general spaces given in [SGN]. Nevertheless, in our case those results are
quite simple to obtain, so for the sake of completeness, we sketch their proof here.

The first step, interesting in itself, is to show that the maximal function Mω

also preserves Mλ
p (ω), 1 < p ≤ ∞. We state such result and outline its proof.

Proposition 3. Let ω be a doubling weight. Then for any λ > 0 and 1 < p ≤ ∞,
the operator Mω is bounded on Mλ

p (ω).

Proof. To check (8) forMωf , pick a ball B = B(x, r) and divide f as f0 = fχB(x,2r)

and fk = fχB(x,2k+1r)\B(x,2kr) for k ≥ 1. Let us bound each term.
For Mωf0 we just use the Lp- boundedness of Mω.
Regarding any Mωfk we use that for any y ∈ B(x, r) is almost a constant,

namely,

Mωfk(y) ' 1

ω(B(x, 2k+4r))

ˆ
B(x,2k+4r)

|f | ω

≤

(
1

ω(B(x, 2k+4r))

ˆ
B(x,2k+4r)

|f |p ω

)1/p

≤ C
(
2kr
)−λ/p ‖f‖Mλ

p (ω)
.

Therefore
rλ

ω(B)

ˆ
B

|Mωfk|pω ≤ C2−kλ‖f‖p
Mλ
p (ω)

.

Adding together all the estimates we arrive at the desired conclusion for p < ∞.
The case p =∞ is obvious since the space is just L∞ by definition. �

As an immediate consequence of the above proposition and the pointwise in-
equalities T ∗f(x) ≤ S∗f(x) ≤ Mfω(x), we obtain more boundedness results for
the maximal operators.

Corollary 1. Under the same assumptions made in Theorem 1, the operators S∗

and T ∗ are bounded on Mλ
p (ω) for any λ > 0 and 1 < p ≤ ∞.
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BOUNDEDNESS OF NEGATIVE POWERS... 9

Now we state and prove the corresponding boundedness results for Jα.

Theorem 2. Let ω be a doubling weight. Given α > 0 and λ > α, the fractional
operator Jα is bounded from Mλ

p (ω) into Mλ
s (ω) for 1 < p < λ/α and 1/s =

1/p− α/λ.

Proof. The idea is to get a kind of Hedberg’s inequality involving the Mλ
p (ω)-norm

as in [H]. More precisely,

|Jαf(x)| ≤ C ‖f‖αp/λ
Mλ
p (ω)

(Mωf(x))
1−αp/λ

,

for almost all x.
The proof of the above inequality follows the same steps than the classical one,

splitting the integral into B(x,R) and its complement and dividing each region
into rings of thickness 2−kR and 2kR respectively. In this manner, the first piece
gets bounded by RαMωf(x) and the second by Rα−λ/p‖f‖Mλ

p (ω)
. Now it is just a

matter of minimizing with respect to R to obtain the stated inequality.
With this tool at hand we easily get

‖Jαf‖Mλ
s (ω)

≤ C‖f‖αp/λ
Mλ
p (ω)
‖(Mωf)

1−αp/λ‖Mλ
s (ω)

.

Observe that if ε is such that εs ≥ 1, ‖gε‖Mλ
s (ω)

= ‖g‖εMλ
εs

. Therefore the last factor

above becomes ‖(Mωf)‖Mλ
p (ω)

, since s(1 − αp/λ) = p. Now, Proposition 3 gives

the desired result. �

As a consequence we get the following boundedness results for the negative pow-
ers of L0 and L. Notice that we have to ask more assumptions on the weight to
make sure that the kernels of these operators are bounded by the kernel of Jα but,
at the same time, such assumptions guarantee that Mλ

p (ω) are non trivial spaces.

Theorem 3. Let ω be a weight in A2 such that ω ∈ RDν ∩ Dγ for some ν > 2.
Then, given α > 0, for any λ such that α < λ ≤ ν we have:

(a) L−α/20 maps continuously Mλ
p (ω) into Mλ

s (ω) provided 1 < p < λ/α and
1/s = 1/p− α/λ.

(b) Further, for V ∈ RHq with q > γ/2, L−α/2 maps continuously Mλ
p (ω) into

Mλ
s (ω) for 1 < p < λ/α and 1/s = 1/p− α/λ.

Remark 5. Although we proved that the kernel Kα has a stronger decay than Hα,
at this point we do not obtain any better results. Anyway, we will go back to this
matter since this feature will be needed in what follows, for working with the mixed
operators, and also in the last section, when we look at the behaviour of fractional
integrals on regularity spaces.

Before ending this section we take a look to the mixed operators L−α/2V −σ/2.
We will work out our results for the case V ∈ RH∞, that is, replacing the q-average
by the supremum, more precisely, if there is a constant C such that for any ball B

sup
B
ω ≤ C

ω(B)

ˆ
B

V ω .

Clearly we are requiring a stronger condition, but with that assumption we can
deal, at this instance, with those operators as well as their adjoints.

As in the non-degenerate Schrödinger case, the mixed operators L−α/2V −σ/2
can be bounded by an appropriate fractional maximal operator when α > σ or just
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10 E. HARBOURE, O. SALINAS, AND B. VIVIANI

by the Hardy-Littlewood maximal function when α = σ. We refer the reader to
[S]. Anyway we are going to pursue a slightly different path, taking advantage of
the results we already proved.

Theorem 4. Let ω be a weight in A2 such that ω ∈ RDν ∩Dγ for some ν > 2 and
V belonging to RH∞. Let α and σ such that 0 < σ ≤ α < ν. Then, for any λ with
α− σ < λ ≤ ν, the operators L−α/2V σ/2 and V σ/2L−α/2 map continuously:

(a) Mλ
p (ω) into Mλ

s (ω) for 1 < p < λ/(α− σ) and 1/s = 1/p− (α− σ)/λ.

(b) Mλ
λ/(α−σ)(ω) into Mλ

∞(ω) = L∞.

(c) Lp(ω) into itself when α = σ and 1 < p ≤ ∞.

Proof. By Lemma 2 part b), it is immediate that for 0 < α < ν the kernel Kα,σ of

L−α/2V σ/2 is bounded by

Kα,σ(x, y) ≤ CN
|x− y|α

ω(B(x, |x− y)|)

(
1 +
|x− y|
ρ(x)

)−N
V σ/2(y).

But, since V ∈ RH∞, taking the ball B(y, ρ(y)) in the definition, we easily get
V (y) ≤ ρ−2(y). Moreover, from the left inequality in (3), we have

ρ−1(y) ≤ Cρ−1(x)

(
1 +
|x− y|
ρ(x)

)N0

.

Then, we may replace ρ(y) by ρ(x) in the above estimate of the kernel changing
the exponent −N by a different one. However, since N is any positive number we
call it again N . In this way we get

(9) Kα,σ(x, y) ≤ CN
|x− y|αρ−σ(x)

ω(B(x, |x− y)|)

(
1 +
|x− y|
ρ(x)

)−N
.

Assume first that α > σ. In this case, multiplying and dividing by |x − y|σ and
using the decay for N = σ we are led to

(10) L−α/2V σ/2f(x) ≤ CJα−σf(x).

Then, the statement in the first item follows from Theorem 2.
For the remaining cases, going back to 9, we may write

L−α/2V σ/2f(x) ≤ CN
ˆ
|x− y|αρ−σ(x)

ω(B(x, |x− y|))

(
1 +
|x− y|
ρ(x)

)−N
|f(y)|ω(y)dy.

Now, splitting the above integral in annulus centered at x and of size 2kρ(x) with
−∞ < k <∞, we are lead to

CN

∞∑
−∞

2kσ
(
1 + 2k

)−N (
2kρ(x)

)α−σ
ω(B(x, 2kρ(x)))

ˆ
B(x,2kρ(x))

|f |ω.

Then, for α > σ and p = λ/(α−σ), for each k we apply Hölder inequality to obtain(
2kρ(x)

)α−β
ω(B(x, 2kρ(x)))

ˆ
B(x,2kρ(x))

|f |ω ≤ ‖f‖Mλ
λ/(α−σ)(ω)

.

Inserting this estimate in the above inequality we get item b) since the series is
convergent.
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BOUNDEDNESS OF NEGATIVE POWERS... 11

Next, when α = σ we bound the averages by the maximal function, leading to

(11) L−α/2V α/2f(x) ≤ CMωf(x).

Therefore the claims concerning to L−α/2V α/2 follow from the properties of Mω.
Finally all the statements about the adjoints operators are immediate once we

notice that their kernels are also bounded by the right hand side of (9). �

Remark 6. From (9) it follows easily that

(12) Kα,σ(x, y) ≤ CN
|x− y|α−σ

ω(B(x, |x− y)|)

(
1 +
|x− y|
ρ(x)

)−N
,

so, based on Lemma 2, we would expect the operators L−α/2V σ/2 for α > σ to
behave as L−(α−σ)/2. However item b) reveals that mixed operators are slightly
better.

4. Regularity results for S∗ and Hα
In this section we prove boundedness on regularity spaces for the operators asso-

ciated to the degenerate elliptic differential operator L0. As expected, these results
will be used later in analyzing regularity of the corresponding operators in the
Schrödinger setting.

Regarding the regularity spaces, it is natural to consider BMO and Lipschitz
spaces associated to the space of homogeneous type (Rd, |.|, ωdx). We recall that
for any 0 ≤ β < 1 the space BMOβ(ω) is defined as the set of those functions in
L1
loc(ω) such that

1

ω(B)

ˆ
B

|f − fB |ω ≤ Crβ ,

for any ball B = B(x, r) and where fB stands for the average of f with respect to
ωdx. We recall also that, in order to check that a function belongs to these spaces,
it is enough to find any constant cB , instead of fB , such that the above inequality
holds. Another remark to have in mind is that the above quantity is not a norm
but a seminorm and we have to identify functions differing by a constant to make
it a normed space. Nevertheless we will use the notation ‖f‖BMOβ to indicate the
least constant C above. For shortness we will not write explicitly the weight in our
notation. We think that it will be clear enough from the context.

As it is well known, for the case β = 0, BMO(ω), as defined above, coincides
with the classical BMO for ω ∈ A∞ (see [MW]). Furthermore, for β > 0 and ω
a doubling weight, they can be identified with their pointwise versions, i.e. those
functions f satisfying

|f(x)− f(y)| ≤ C|x− y|β ,
and here the weight ω plays no role. So, again, they coincide with integral Lipschitz
spaces with respect to the Lebesgue measure, but now just for a doubling weight.
Often, we will use the ω-integral versions, specially when we want to work in a
unified way, treating all spaces simultaneously. We emphasize again that we will
be using fB to mean the average over B with respect to the measure ωdx and we
shall explicitly indicate if a different meaning is given.

We start by considering the maximal semigroup operator S∗. We recall that it
is defined as

S∗f(x) = sup
t>0
|
ˆ
Rd
ht(x, y)f(y)ω(y)dy |.
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12 E. HARBOURE, O. SALINAS, AND B. VIVIANI

In this case we will give a result a little bit weaker than that for the fractional
integral but it will be enough to our future purposes. More precisely, we will

analyze the behaviour of S∗ over the subspaces BMOβ0 (ω) = BMOβ(ω) ∩ L∞
equipped with the sum of both, the norm and seminorm. The main advantage of
this restriction is that, according to Theorem 1, S∗f is a bounded function and
hence locally integrable and so there is not need of modifying the definition of the
operator. Notice that when β = 0 the new space is just L∞. Let us also point out
that since, the semigroup comes from the differential operator L0, we have St1 ≡ 1
for any t > 0. We recall that the kernel ht satisfies the smoothness condition with
exponent η given in Lemma 1 part b). With this notation we state the following
result.

Theorem 5. Let ω be a weight in A2 ∩ RDν with ν > 2. Then, the maximal

operator S∗ is bounded on BMOβ0 (ω) for any 0 ≤ β < η.

Proof. We follow the same steps as in the classical case. First, the result when
β = 0 is just the boundedness on L∞ contained in Theorem 1. Second, for β > 0

we may use the pointwise description. So, let f ∈ BMOβ0 (ω). As we said, S∗f is
finite a.e.. Let us take x and z two such points. Then,

|S∗f(x)− S∗f(z)| ≤ sup
t>0
|
ˆ
Rd

[ht(x, y)− ht(z, y)]f(y)ω(y)dy |.

Next, since St1(x) = St1(z) we have that when f is constant the above integral
is zero and therefore we may change, inside the integral, f(y) by the difference
f(y)− f(x). Now, we split the integration into two pieces B = B(x, 4|x− z|) and
its complement. For the first integral we bound the difference by the sum, giving
rise to two terms, that is,

sup
t>0

ˆ
B

ht(x, y)|f(y)− f(x)|ω(y)dy + sup
t>0

ˆ
B

ht(z, y)|f(y)− f(x)|ω(y)dy.

We do the first one and the other follows similarly once we observe that B ⊂
B(z, 5|x− z|). Clearly, using that f ∈ BMOβ(ω), the first term is bounded by

C ‖f‖BMOβ |x− z|β sup
t>0

ˆ
B

ht(x, y)ω(y)dy ≤ C ‖f‖BMOβ |x− z|β .

As for the integral over Bc, since y ∈ Bc implies |x − z| ≤ |x − y|/4, we may use
Lemma 1 part b). More precisely,

(13) , |ht(x, y)− ht(z, y)| ≤ C
(
|x− z|√

t

)η
e−
|x−y|2
ct

ω(B(x,
√
t))

.

Now, our aim is to majorize the right hand side independently of t. To do so we

use the estimate sεe−s
2 ≤ Ce−as

2

for some constants a and C with ε = η to get
the bound

C

(
|x− z|
|x− y|

)η
e−
|x−y|2

c′t

ω(B(x,
√
t))

.

But, by the reverse doubling and doubling conditions we obtain for |x− y| ≤
√
t

ω(B(x,
√
t)) ≥ c1

( √
t

|x− y|

)ν
ω(B(x, |x− y|)),
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BOUNDEDNESS OF NEGATIVE POWERS... 13

and for |x− y| >
√
t

ω(B(x,
√
t)) ≥ c1

( √
t

|x− y|

)γ
ω(B(x, |x− y|)),

where γ is the doubling exponent. In any case, using once again the inequality

sεe−s
2 ≤ Ce−as2 , we arrive at

(14) |ht(x, y)− ht(z, y)| ≤ C
(
|x− z|
|x− y|

)η
e−
|x−y|2
c̃t

ω(B(x, |x− y|))
.

After majorizing the exponential by one, we plug this estimate in the integral over
Bc. Using again f ∈ BMOβ(ω), we see that it is bounded by

C‖f‖BMOβ |x− z|η
ˆ
Bc

|x− y|β−η

ω(B(x, |x− y|))
ω(y)dy.

Splitting the integral in annulus 2k+1B \ 2kB with k ≥ 2, we get

C‖f‖BMOβ |x− z|η
∑
k

(2k|x− z|)β−η.

Since β < η the sum is convergent we obtain the desired estimate.
Finally, using again ‖S∗f‖∞ ≤ C‖f‖∞, we complete the proof of the theorem.

�

Remark 7. Looking at the proof, notice that in fact we have obtained the stronger
inequality supt>0 |Stf(x)−Stf(z)| ≤ C‖f‖BMOβ |x−z|β . That is, when estimating
the oscillation the L∞-norm of f does not play any role.

Now we turn our attention to the fractional operator L−α/20 . In Lemma 2 we
already estimated the kernel size for 0 < α < ν. However, to deal with these
operators acting on functions in Mλ

p (ω) with p ≥ λ/α or in BMOβ(ω), we need
not only size but also some smoothness of Hα, property that will be derived from
the smoothness of the semigroup kernel, contained in Lemma 1.

Lemma 3. Let ω be a weight in A2 ∩RDν with ν > 2. Then we have

(15) |Hα(x, y)−Hα(z, y)| ≤ C
(
|x− z|
|x− y|

)η |x− y|α

ω(B(x, |x− y|))
,

provided |x− z| ≤ |x− y|/4.

Proof. To estimate the left hand side above, using expression 4, it is enough to
bound ˆ ∞

0

|ht(x, y)− ht(z, y)| tα/2 dt
t

that, according to 1, is bounded by(
|x− z|
|x− y|

)η ˆ ∞
0

(
|x− y|√

t

)η
e−
|x−y|2
c̃t

ω(B(x,
√
t))

tα/2
dt

t
.

As in Lemma 2, performing the change of variable t = |x− y|2s we get

|x− y|α
(
|x− z|
|x− y|

)η ˆ ∞
0

s(α−η)/2e−1/c̃s

ω(B(x,
√
s|x− y|))

ds

s
.
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14 E. HARBOURE, O. SALINAS, AND B. VIVIANI

Now, splitting the integral into (0, 1)∪ [1,∞) and using that ω ∈ Dγ and ω ∈ RDν

respectively, we get the bound(
|x− z|
|x− y|

)η |x− y|α

ω(B(x, |x− y)|))

(ˆ 1

0

s(α−η−γ)/2e−1/c̃s
ds

s
+

ˆ ∞
1

s(α−η−ν)/2
ds

s

)
,

and both integrals are convergent since α < ν, completing the proof of the Lemma.
�

Now we are ready to state and prove new results for the operator L−α/20 . First
we are going to modify our operator so it makes sense for all functions in Mλ

p (ω)

with λ/α ≤ p < λ/(α − η)+, which means λ/α ≤ p < ∞ when α ≤ η and
λ/α ≤ p < λ/(α− η) , otherwise. In fact, our definition works on functions in the

larger spaces Mα−β
1 (ω), for any 0 ≤ β < α and β < η. Clearly these spaces contain

any of the aforementioned ones since, by Hölder’s inequality, Mλ
p (ω) ⊂ M

λ/p
1 (ω)

and we β = α−λ/p satifies the above conditions for λ/α ≤ p < λ/(α− η)+. Then,

we introduce for f ∈Mα−β
1 (ω) and B1 = B(0, 1)

H̃αf(x) =

ˆ
[Hα(x, y)−Hα(0, y)χBc1 ]f(y)ω(y)dy.

First we notice that the right hand side gives a locally integrable function.
Clearly, it will be enough to show integrability in balls B(0, R) with R ≥ 2. In
fact, from the definition, we have

H̃αf(x) =

ˆ
B1

Hα(x, y)f(y)ω(y)dy +

ˆ
Bc1

[Hα(x, y)−Hα(0, y)]f(y)ω(y)dy.

Let us call the above terms I(x) and II(x), respectively. Then, by the Fubini-Tonelli
theorem and (6), we have

ˆ
B(0,R)

|I(x)|ω(x)dx ≤
ˆ
B1

|f(y)|

(ˆ
B(y,2R)

|x− y|α

ω(B(x, |x− y|))
ω(x)dx

)
ω(y)dy,

since B(0, R) ⊂ B(y, 2R). Now, splitting in annulus of thickness 2−kR, the inner
integral is bounded by CRα and hence, being f locally integrable with respect to
the weihgt ω, the above quantity is finite.

Regarding the integrability of II, we observe that

|II(x)| ≤
ˆ
B(0,R)

Hα(x, y)|f(y)|ω(y)dy +

ˆ
B(0,R)\B1

Hα(0, y)|f(y)|ω(y)dy

+

ˆ
B(0,R)c

|Hα(x, y)−Hα(0, y)||f(y)|ω(y)dy = II1(x) + II2(x) + II3(x).

The local integrability of II1 follows as for I. Regarding II2, we notice that
Hα(0, y) ≤ C Rα

ω(B(0,1)) for y ∈ B(0, R) \ B1 and then II(x) is a bounded func-

tion. Finally, to bound II3, we use Lemma 3 obtaining

II3(x) ≤ C|x|η
ˆ
B(0,R)c

|y|α−η

ω(B(0, |y|))
|f(y)|ω(y)dy.
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BOUNDEDNESS OF NEGATIVE POWERS... 15

To see that the integral is finite we must use that f ∈ Mα−β
1 (ω). In fact, dividing

the integral in annulus B(0, 2k+1R) \B(0, 2kR) we have

II3(x) ≤ C|x|η
∑
k≥0

(
2kR

)α−η
ω(B(0, 2kR))

ˆ
B(0,2k+1R)

|f(y)|ω(y)dy

≤ C‖f‖Mα−β
1
|x|ηRβ−η

∑
k≥0

2k(β−η).

Since β < η the series converges and II3 is also a locally integrable function with
respect to the weight ω.

Having proved the good definition of our modified operator H̃α we establish
continuity properties.

Theorem 6. Let ω be weight in A2 ∩ RDν with ν > 2. Then, for 0 < α < ν,

the operator H̃α maps continuously Mα−β
1 (ω) into BMOβ(ω) for any given β with

0 ≤ β < min {η, α}. Furthermore, when f is also of compact support H̃αf coincides

with L−α/20 f as functions in BMOβ(ω).

Proof. We know that H̃αf is a locally integrable function and hence finite a.e..
Moreover, following a similar argument, we will show that for any given ball B =
B(x0, r), setting B̃ = 2B, we have that

aB =

ˆ
Rd

[Hα(x0, y)χB̃c −Hα(0, y)χB1
c ]f(y)ω(y)dy

is a finite constant.
In fact, take a ball B∗ = B(x0, R) with R large enough so that it contains

2B1 ∪ B̃, for example we may choose R = 2(|x0|+ r + 1). Then

|aB | ≤
ˆ
B∗\B̃

Hα(x0, y)|f(y)|ω(y)dy +

ˆ
B∗\B1

Hα(0, y)|f(y)|ω(y)dy

+

ˆ
B∗c
|Hα(x0, y)−Hα(0, y)||f(y)|ω(y)dy = A1 +A2 +A3.

For the first two terms we have that the kernel is bounded since, in the first integral
2r ≤ |x0− y| < R, and in the second 2 ≤ |y| ≤ |x0|+R. Therefore the finiteness of
both terms follows using the local integrability of f . Regarding the last term, we
have |x0 − y| ≥ R > 2|x0| and so Lemma 3 can be applied. Proceeding as for II3
above we obtain for f ∈Mα−β

1 (ω)

A3 ≤ C‖f‖Mα−β
1 (ω)|x0|

ηRβ−η <∞.

In this way we have proved that for any ball B

H̃αf(x) =

ˆ
B̃

Hα(x, y)f(y)ω(y)dy +

ˆ
B̃c

[Hα(x, y)−Hα(x0, y)]f(y)ω(y)dy + aB

= J1(x) + J2(x) + aB .

(16)

Now we show that H̃αf belongs to BMOβ(ω). We fix a ball B = B(x0, r) and we
use the above expression for that specific ball. First we integrate J1(x) over B and
we argue as for I(x) above, that is, changing the order of integration and evaluating
the inner integral. In this way we arrive at

IMAL PREPRINT # 2021-0051
ISSN 2451-7100 
Publication date: March 17, 2021

Prep
rin

t



16 E. HARBOURE, O. SALINAS, AND B. VIVIANI

ˆ
B

|J1(x)|ω(x)dx ≤ Crα
ˆ
B̃

|f(y)|ω(y)dy ≤ C‖f‖Mα−β
1 (ω)r

βω(B).

Next, to calculate the oscillation over B of the remaining terms we may subtract
a constant, for example aB . Therefore we only have to estimate the integral of
|J2(x)|. We apply again Lemma 3. In this manner, since |x − y| ' |x0 − y| and
ω(B(x0, |x0 − y|)) ' ω(B(x, |x− y|)), we get

|J2(x)| ≤ C|x0 − x|η
ˆ
B̃c

|x0 − y|α−η

ω(B(x0, |x0 − y|))
|f(y)|ω(y)dy.

Splitting the integral in annulus 2k+1B \ 2kB with k > 1 we obtain

|J2(x)| ≤ C‖f‖Mα−β
1 (ω) r

β .

Averaging with respect to ωdx we obtain the desired estimate. Finally, notice that
if f has compact support we may take in (16) a ball B large enough so that the
second term is zero. This means that

H̃αf(x) =

ˆ
Rd
Hα(x, y)f(y)ω(y)dy + aB ,

and hence H̃αf equals to L−α/20 f as functions in BMOβ(ω). �

Remark 8. In the non-degenerate case of ω ≡ 1, it is possible to prove that for any

s > 1, weak-Ls ⊂ M
d/s
1 (see for example Lemma 4.1 [HSV] with w ≡ 1). There-

fore our result above recovers the boundedness of the modified classical fractional
integral of order α from weak-Ld/α into BMO or, more generally, from weak-Lp

into BMOβ for p ≥ d/α and β = α − p/d < 1 (see Theorems 1.1 and 1.2 in [GV]
and Theorem 2.5 in[HSV]). Moreover, we get an improved version since, as it was

proved in [GHI], the inclusion of weak-Ls into M
d/s
1 is strict.

Our next step concerns with the behaviour of L−α/20 on BMOβ(ω) spaces. As
in the previous case, we have to give a different definition for the operator to make
sense on this kind of functions and having in mind that whenever they have compact
support both definitions must coincide upon a constant since that is the meaning
of equality in BMOβ(ω) spaces. We have estimated size and smoothness of the
kernel Hα. Now we reveal a further property. Since for the semigroup {St}t>0 we

know that
´
ht(x, y)ω(y)dy = 1 for any x (see for example [St]), we have

ˆ ∞
0

(

ˆ
[ht(x, y)− ht(x0, y)]ω(y)dy) tα/2

dt

t
= 0.

Now, if we take absolute value inside and reverse the order of integration, it is easy
to check that the iterated integral is finite. In fact, if we divide the integration on
Rd into B(x, 2|x− x0|) and its complement, the first piece is bounded byˆ

B(x,2|x−x0|)
Hα(x, y)ω(y)dy +

ˆ
B(x0,3|x−x0|)

Hα(x0, y)ω(y)dy,

and both are finite in view of the size of Hα. To estimate the integration over the
complement we use smoothness of ht and it is exactly the calculation we made in
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BOUNDEDNESS OF NEGATIVE POWERS... 17

Lemma 3, so we obtain the bound

C|x− x0|η
ˆ
Bc(x,2|x−x0|)

|x− y|α−η

ω(B(x, |x− y)|)
ω(y)dy,

and the integral is finite if we assume α < η.
Therefore the order of integration can be reversed obtaining

(17)

ˆ
[Hα(x, y)−Hα(x0, y)]ω(y)dy = 0,

for 0 < α < η.
Now, given a function f ∈ BMOβ(ω), 0 ≤ β < η, we fix some x0 and define the

following operator

H̊αf(x) =

ˆ
[Hα(x, y)−Hα(x0, y)]f(y)ω(y)dy.

With this definition we state and prove the following result.

Theorem 7. Let ω be a weight in A2 ∩RDν with ν > 2. Then, for 0 < α < η, the
operator H̊α maps continuously BMOβ(ω) into BMOβ+α(ω) for any given β > 0

such that 0 ≤ β + α < η. Furthermore, when f is also of compact support, H̊αf
coincides with L−α/20 f as functions in BMOβ+α(ω).

Proof. We begin observing that 17 allows us to substitute f(y) by f(y)−c inside the
integral, therefore the definition is independent of the member of the equivalence
class.

Next, we check that for f ∈ BMOβ(ω) with 0 < α + β < η, it defines a locally
integrable function, in fact it is locally bounded. First notice that, given a ball B
and j ∈ Z, adding and subtracting intermediate averages, we get

(18)
1

ω(2jB)

ˆ
2jB

|f |ω ≤ ‖f‖BMOβc(j, β) rβ + |f |B ,

where for β > 0 is either c(j, β) = 2jβ when j > 0 and c(j, β) = c for j < 0 or
c(j, β) = j when β = 0. Now we show that the integral in the definition converges
absolutely for any pair x, x0. Take B = B(x, r) with r = 2|x − x0| and divide the
integral in B and Bc. As usual, over B we majorize by the sum while in Bc we use
the smoothness of the kernel. In this way,ˆ

B

Hα(x, y)|f(y)|ω(y)dy ≤ Crα
∑
j≤0

2jα
1

ω(2jB)

ˆ
2jB

|f |ω .

Then, using (18) we get the bound

C|x− x0|α
(
‖f‖BMOβ |x− x0|β + |f |B

)
.

Noting that |f |B(x,2|x−x0|) is a continuous function of x, that is also true for the
above function and so our original integral is a locally bounded function. A similar
argument holds for the other integral on B.

For the integral on Bc, in view of the smoothness of Hα, we haveˆ
Bc
|Hα(x, y)−Hα(x0, y)||f(y)|ω(y)dy ≤ C|x−x0|η

ˆ
Bc

|x− y|α−η

ω(B(x, |x− y|))
|f(y)|ω(y)dy.
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18 E. HARBOURE, O. SALINAS, AND B. VIVIANI

Splitting the integrals in annulus 2j+1B \ 2jB, j > 0, we get the bound

C|x− x0|η
∑
j>0

(
2j |x− x0|

)α−η 1

ω(2jB)

ˆ
2jB

|f |ω,

and applying (18) the last expression is bounded by

C|x− x0|α(c|f |B(x,2|x−x0|) + |x− x0|β‖f‖BMOβ

∑
j>0

c(j, β)2j(α−η)),

and the sum is convergent recalling that α + β < η. Again, since this bound is a
continuous function of x, our initial quantity is locally bounded.

Therefore we have proved that H̊αf is well defined and, in fact, finite for any x.
Moreover, it is independent of the choice of x0. If we take another point, say x1
in the definition of H̊α, since we showed that the integral is absolutely convergent,
the difference between the two possible definitions isˆ

[Hα(x1, y)−Hα(x0, y)]f(y)ω(y)dy,

giving a finite constant.
Next we prove the continuity result. We may use the pointwise description in

BMOβ+α(ω) since α+β > 0. Let x and z be two points and set B = B(x, 2|x−z|).
As we observed, from (17) we can replaced f by f − fB in the definition of the
operator. So we have to boundˆ

|Hα(x, y)−Hα(z, y)||f(y)− fB |ω(y)dy = I1 + I2,

where I1 and I2 are the integrals over B and Bc respectively. This time we are
going to use the estimate

(19)
1

ω(2jB)

ˆ
2jB

|f − fB |ω ≤ c(j, β)‖f‖BMOβ |x− z|β ,

where c(j, β) has the same meaning as in (18). This inequality follows from just

observing |f − fB | ≤ |f − f2jB | +
∑j
i=2 |f2iB − f2i−1B |. Thus, for I1 we proceed

as before, majorizing the difference of the kernels by its sum. For each piece we
decompose in rings arriving at

|x− z|α
∑
j≤0

2jα
1

ω(2jB)

ˆ
2jB

|f − fB |ω ≤ C|x− z|α+β‖f‖BMOβ

∑
j≤0

c(j, β)2jα,

as we wished, since the series is convergent. The other integral over B is the same
once we notice B ⊂ B(z, 3|x− z|). Regarding I2 we may apply the smoothness and
proceed as above, using this time (19). In this way we get

I2 ≤ C|x− z|α+β‖f‖BMOβ

∑
j>0

2j(α+β−η)

and the series is convergent since α+ β < η. �

Remark 9. Notice that in the proof of Theorem 6, we just use the size and smooth-
ness of the kernel and the doubling property of the weight. Therefore, a more
general result could be obtained for an integral operator with kernel satisfying (6)
and (15). In particular both conditions hold for Kα, the kernel of L−α/2 as we shall
see in the next section. Moreover, with a little of extra work, a similar result could
be obtained in the context of a space of homogeneous type. Regarding Theorem 7
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BOUNDEDNESS OF NEGATIVE POWERS... 19

we use an additional property, namely, the mean value zero for the difference of the
kernel at distinct points, as stated in (17). Consequently, an analogous extension
could be derived for a kernel having the three named properties. However, let us to
remark that the third condition is not satisfied by the kernel of L−α/2. Finally we
point out that the reason to ask more assumptions on the weight ω in Theorems 6

and 7 is just to guarantee that L−α/20 satisfies all the needed estimates.

5. Regularity results for operators related to L

In this section we are going to deal with the degenerate Schrödinger case, analyz-
ing the behaviour of the maximal operator of the semigroup, fractional integration
as well as the mixed operators L−α/2V σ/2.

Following [MSTZ], we take the point of view of proving a general theorem con-
cerning continuity on regularity spaces, and then we will apply it to the afore-
mentioned operators. In doing so, the results of the previous section will be quite
helpful.

First, let us introduce the suitable regularity spaces in this context. Associate to
ω and V , we recalled in the introduction the definition of the critical radius function
ρ whenever V ∈ RHq with q > γ/2 (see (2)). As in the non-degenerate case, given
0 ≤ β < 1, we define the space BMOβρ (ω) as the locally integrable functions with
respect to ω dx such that

(20)
1

ω(B)

ˆ
B

|f − fB |ω ≤ crβ

for any ball B = B(x, r) and moreover

(21)
1

ω(B(x, r))

ˆ
B(x,r)

|f |ω ≤ Crβ if r ≥ ρ(x).

In this definition fB denotes the average with respect to the measure ω. Even
it is the same notation that for Lebesgue averages, most of the time we will use
it with that meaning. Otherwise we shall point it out explicitly. The sum of the
infima of the constants c and C actually gives a norm. Also, for a doubling weight,
it can be proved that it is enough to ask the second condition only for critical balls,
i.e., when r = ρ(x), while the first suffices just for subcritical balls. Besides, as in
the classical case, note that for β = 0, if we replace ω dx by the Lebesgue measure
everywhere in the definition, we get the same space as long as ω ∈ A∞. In fact,
for the oscillation is just the result given in [MW] and the average can be obtained
adding and subtracting the corresponding average. Since we are asking the weight
to be in A2 in the degenerate Schrodinger context, that characterization applies.

Also, when β > 0 and ω is doubling, our functions can be described by the
following pointwise inequalities

|f(x)− f(z)| ≤ C|x− y|β if |x− y| < ρ(x)

and

|f(x)| ≤ Cρβ(x).

As a consequence, for β > 0 and ω doubling, the integral space BMOβρ (ω) defined
above also coincides with the integral version corresponding to ω ≡ 1. Nevertheless,
we shall keep the weight in the notation of the spaces since we will very often work
with that characterization, even though we will omit it in the subscript of the norm.
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20 E. HARBOURE, O. SALINAS, AND B. VIVIANI

Another feature of these spaces is that for any β ≥ 0, the following consequence
of John-Nirenberg inequality is also valid in this context, namely

(22)

(
1

ω(B)

ˆ
B

|f − fB |pω
)1/p

≤ C‖f‖BMOβρ
rβ ,

for any ball B = B(x, r) and

(23)

(
1

ω(B(x, r)

ˆ
B(x,r)

|f |pω

)1/p

≤ C‖f‖BMOβρ
rβ

for balls such that r ≥ ρ(x).
In fact (22) comes from the results about John-Nirenberg type inequalities on

spaces of homogeneous type as given in [FPW]. As for (23) it is enough to prove it
when r = ρ(x) and that follows writing f = (f−fB)+fB and applying Minkowski’s
inequality and (22).

Let us point out that, in order to define the above spaces and prove the stated
properties, we only need ω to be a doubling weight, excepting for the identification
between BMOρ(ω) and the corresponding space with ω ≡ 1, that it will not be used
in what follows. Also notice that the potential does not appear explicitly in the
definition but hidden into the critical radius function ρ. As we mentioned, under
the assumptions made on V , the associate ρ given by (2) satisfies the inequalities
(3). Moreover, the latter property on ρ is all we need to work with these spaces.

Since our first goal is to obtain regularity results in a general framework, from
now on we assume that we are given a doubling weight ω and a critical radius
function ρ, i.e., a function ρ : Rd 7→ R+ satisfying (3). So, at this point, there
will be not any mention neither to the potential nor to other assumptions on ω. In
fact, they will be needed at the moment we want to apply our general theorem to
concrete examples coming from the Schrödinger context.

In the next lemma we put together some technical properties of functions in
these spaces that will be needed in the sequel.

Lemma 4. Let ω be a doubling weight and f ∈ BMOβρ (ω). Then we have

(a) For any critical ball B = B(x0, ρ(x0)) and k ≥ 0

(24)
1

ω(2−kB)

ˆ
2−kB

|f |ω ≤ ‖f‖BMOβρ
c(k, β) ρ(x0)β ,

with c(k, β) = k when β = 0 and c(k, β) = c when 0 < β < 1.
(b) For any subcritical ball B = B(x0, r) with r ≤ ρ(x0) and k ≥ 0

(25)
1

ω(2kB)

ˆ
2kB

|f − fB |ω ≤ ‖f‖BMOβρ
a(k, β) rβ

with a(k, β) = k when β = 0 and a(k, β) = 2kβ when 0 < β < 1.

Proof. For β = 0 let us observe that

|f | ≤ |f − f2−kB |+ |f2−kB − f2−k+1B |+ ...+ |f2−1B − fB |+ |fB |.
Since for any 0 ≤ j < k − 1 we have

|f2−j−1B − f2−jB | ≤
C

ω(2−jB)

ˆ
2−jB

|f − f2−jB |ω ≤ C‖f‖BMOρ,

averaging over 2−kB and using (21) we obtain the desired estimate.
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BOUNDEDNESS OF NEGATIVE POWERS... 21

For the case β > 0, since ω is doubling, we may use the pointwise estimate
|f(x)| ≤ ‖f‖BMOβρ

ρ(x)β and, having in mind that x ∈ 2−kB(x0, ρ(x0)) implies

ρ(x)) ' ρ(x0)), the conclusion is straightforward.
As for item b) we just recall that BMOβρ (ω) ⊂ BMOβ(ω) and then it follows

from (19). �

Following the approach in [MSTZ], given a doubling weight and a critical radius
function, we want to enclose the operators we are handling in a general class, so we
can obtain regularity results for all of them simultaneously. Let us remind that one
of the conditions they imposed in the non-degenerate case is the Lp-boundedness.
However, as it was shown in section 2, there were cases where continuity on Lp(ω)
might not hold so, somehow, we must change this hypothesis. Examples of such
operators were L−α/2 and L−α/2V σ/2 with α > σ.

To be precise, given a doubling weight ω, a critical radius function ρ and a
parameter 0 ≤ α, we associate a class of operators that we call α-Schrödinger-
Calderón-Zygmund with respect to the measure ωdx. We distinguish two cases:

Case α > 0: T is an integral operator with respect to the measure ωdx, given
by a kernel K(x, y) that satisfies

(a) For any N > 0 there is a constant CN such that

(26) |K(x, y)| ≤ CN
|x− y|α

ω(B(x, |x− y|))

(
1 +
|x− y|
ρ(x)

)−N
.

(b) There exists some 0 < δ < 1 such that

(27) |K(x, y)−K(z, y)| ≤ C
(
|x− z|
|x− y|

)δ |x− y|α

ω(B(x, |x− y|))
.

provided |x− z| < |x− y|/2.

Case α = 0: T is a linear bounded operator on Lp(ω), 1 < p < ∞ having an
associated kernel K(x, y) in the sense that, for any Lp(ω)-function with compact
support

Tf(x) =

ˆ
Rd
K(x, y)f(y)ω(y)dy for x /∈ supp(f).

Furthermore, K satisfies conditions a) and b) above with α = 0.

Remark 10. The condition (27) involves certain regularity on the kernel outside
the diagonal and, as it is easy to check, the factor 1/2 could be replaced by any
different fraction 0 < τ < 1. More precisely, if a kernel satisfies (26) and (27) for
|x− z| < τ |x− y|, (27) also holds for |x− z| < |x− y|/2.

After giving this definition, we check that T is well defined for functions in
BMOβρ (ω).

First we deal with the case α > 0. The size condition on the kernel allows to see
that the integral ˆ

Rd
K(x, y)f(y)ω(y)dy

is absolutely convergent for almost any x and, moreover, it gives a locally integrable
function. In fact, let B = B(x0, ρ(x0)) be a critical ball and let us split the above
integral in 2B and its complement. For the first piece, since x ∈ B implies B ⊂
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22 E. HARBOURE, O. SALINAS, AND B. VIVIANI

B(x, 3ρ(x0)) = Bx, using 26 and dividing into the annulus 2−kBx \ 2−k−1Bx we
have ˆ

2B

|x− y|α

ω(B(x, |x− y|))
|f(y)|ω(y)dy ≤

∞∑
k=0

(2−kρ(x))α

ω(2−kBx)

ˆ
2−kBx

|f(y)|ω(y)dy,

and, in view of (24), we get the bound Cρ(x)α+β‖f‖BMOβρ
for any 0 ≤ β < 1.

Now, since x ∈ B implies ρ(x) ' ρ(x0), we have that the left hand side above is a
function bounded by Cρ(x0)α+β‖f‖BMOβρ

on B.

Next we consider the integral over (2B)c. Here we use the extra decay of the
kernel and that for x ∈ B and y /∈ 2B, |x − y| ' |x0 − y|, ω(B(x, |x − y|)) '
ω(B(x0, |x0 − y|)) and ρ(x) ' ρ(x0). So, splitting into annulus 2kB \ 2k−1B, we
have
(28)ˆ

(2B)c

|x− y|α

ω(B(x, |x− y|))
|f(y)|ω(y)dy ≤ CNρ(x0)α

∑
k>0

2k(α−N)

ω(2kB)

ˆ
2kB

|f(y)|ω(y)dy.

Since the averages of f are bounded by 2kβρ(x0)β‖f‖BMOβρ
we get

(29)̂

(2B)c

|x− y|α

ω(B(x, |x− y|))
|f(y)|ω(y)dy ≤ CNρ(x0)α+β‖f‖BMOβρ

∑
k>0

2k(α+β−N),

and the series is convergent choosing N large enough.
Therefore we have shown that the integral is absolutely convergent and, as a

function of x, is bounded over any critical ball.
Now we take care of the case α = 0. In this case, to apply the operator to

f ∈ BMOβρ (ω) has the following meaning: take a critical ball B as above and
x ∈ B, then

Tf(x) = T (fχ2B)(x) +

ˆ
(2B)c

K(x, y)f(y)ω(y)dy.

and both terms make sense. For the first, notice that fχ2B has compact support
and it is in Lp(ω) because of the John-Nirenberg property for f (see (22) and (23)
above), and hence, by the assumption on the boundedness in Lp(ω), T (fχ2B) is
also in Lp(ω). So, in particular, is locally integrable and finite a.e.. As for the
second term, as in the previous case, we may use the kernel for representing the
operator and moreover, the estimate made above for the integral over (2B)c also
holds when α = 0. We leave to the reader to check that the value of Tf(x) is
independent of the chosen ball B.

Finally we notice that in both cases, either α > 0 or α = 0, we may apply the
operator T to f ≡ 1, since it belongs to BMOρ(ω), no matter what ρ is.

Now we are ready to present the announced general theorem.

Theorem 8. Let ω be a doubling weight and ρ a critical radius function. Suppose
T is an α-Schrödinger-Calderón-Zygmund operator with respect to ωdx that further
satisfies the following T1-condition:

There exists ε > 0 and a constant C such that for any ball B = B(x0, r) with
r < ρ(x0)

1

rαω(B)

ˆ
B

|T1(x)− (T1)B | ω(x)dx ≤ C
(

r

ρ(x0)

)ε
.

IMAL PREPRINT # 2021-0051
ISSN 2451-7100 
Publication date: March 17, 2021

Prep
rin

t



BOUNDEDNESS OF NEGATIVE POWERS... 23

Then, T maps continuously BMOβρ (ω) into BMOβ+αρ (ω) for any 0 ≤ β ≤ ε and
such that 0 ≤ α+ β < min {1, δ}.

Proof. We are going to follow similar steps to those for Theorem 1.1 in [MSTZ],
so we shall be more precise only when there is a difference. Let f ∈ BMOβρ (ω).
First we check the condition for averages over critical balls. In the case α > 0 it
is almost done, since we have seen that given a critical ball B = B(x0, ρ(x0)) the
inequality |Tf |(x) ≤ Cρ(x0)α+β‖f‖BMOβρ

holds for x ∈ B. Averaging over B, we

get the right estimate for |Tf |B .
When α = 0, to take care of the average of |T (fχ2B)|, we use the Lp(ω)-

boundedness of T and (23), the John-Nirenberg property of f , to get

1

ω(B)

ˆ
B

|T (fχ2B)(x)|ω(x)dx ≤
(

1

ω(B)

ˆ
B

|T (fχ2B)(x)|pω(x)dx

)1/p

≤ C
(

1

ω(B)

ˆ
2B

|f(y)|pω(y)dy

)1/p

≤ Cρ(x0)β ‖f‖BMOβρ
,

(30)

since the weight is doubling. As for |Tfχ(2B)c |, when checking the good definition,

we have already seen that it is bounded by Cρ(x0)β+α‖f‖BMOβρ
in both cases,

either α > 0 or α = 0, and so we get also the needed estimate.
Now we take care of the oscillation. LetB = B(x0, r) with r < ρ(x0). We set

f = (f − fB)χ4B + (f − fB)χ(4B)c + fB = f1 + f2 + f3.

For α > 0 it is clear that it is enough to estimate the oscillation of T (fi),
i = 1, 2, 3, noting that we may subtract a different constant in each case. For α = 0
that follows arguing as in [MSTZ] (see (3.3) there).

Now, for Tf1, we choose the constant zero and proceed as above when estimating
T (fχB). When α = 0 we use that f satisfies (22) while for α > 0 we reverse the
order of integration and evaluate the inner integral to get

ˆ
B

(

ˆ
4B

K(x, y)|f1(y)|ω(y)dy )ω(x)dx ≤
ˆ
4B

(

ˆ
B(y,3r)

K(x, y)ω(x)dx ) |f1(y)|ω(y)dy

≤ Crα
ˆ
4B

|f(y)− fB |ω(y)dy

≤ C‖f‖BMOβρ
ω(B) rα+β ,

(31)

where for the last inequality we add and subtract f4B and we use the doubling
property of ω.
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24 E. HARBOURE, O. SALINAS, AND B. VIVIANI

For Tf2, we subtract its average, use the smoothness of the kernel and split the
integrals in annulus to get

|Tf2(x)− Tf2(z)| ≤ C|x− z|δ
ˆ
(4B)c

|x− y|α−δ

ω(B(x, |x− y|))
|f(y)− fB |ω(y)dy

≤ Crα
∞∑
k=1

2k(α−δ)
1

ω(2kB)

ˆ
2kB

|f(y)− fB |ω(y)dy

Crα+β‖f‖BMOβρ

∞∑
k=1

c(k, β)2k(α−δ),

(32)

where we have used (25). Since the sum is finite for α+β < δ, averaging over B in
x and z, we obtain the desired inequality.

Finally for Tf3, after subtracting its average, we use Lemma 4 with B =
B(x0, ρ(x0))) and k = k0, the smallest non-negative integer such that 2k0r ≥ ρ(x0),
together with the assumption on T1 to get

|fB |
ˆ
B

|T1(x)− (T1)B |ω(x)dx ≤ ‖f‖BMOβρ
c(k0, β)ω(B)rαρ(x0)β

(
r

ρ(x0)

)ε
≤ C‖f‖BMOβρ

ω(B)rα+βc(k0, β)

(
ρ(x0)

r

)β−ε
.

(33)

In the case β > 0 we have c(k0, β) = c and the desired estimate follows recalling

β ≤ ε. When β = 0 we have c(k0, 0) ' 1 + log ρ(x0)
r and then c(k0, 0) ≤ (ρ(x0)/r)ε,

completing the proof of the theorem. �

Remark 11. The above result can also be stated in the vector valued setting. As-
sume we have a linear operator acting on functions defined on Rd and taking values
in a Banach space E and that it satisfies all the conditions with absolute value
replaced by the E-norm, then the conclusion also holds. We shall need this version
for α = 0, so we must require boundedness from Lp(ω) into LpE(ω) with 1 < p <∞.

Now we turn to the applications of our general theorem in order to obtain reg-
ularity results for the maximal operator of the degenerate Schrödinger semigroup,
T ∗, non-negative powers L−α/2 and the mixed operators L−α/2V σ/2. Therefore
we go back to our initial assumptions on ω, that is, ω is a A2-weight such that
ω ∈ RDν ∩Dγ with ν > 2 and the function ρ is derived from ω and some potential
V ∈ RHq with q > γ/2, according to (2). The additional assumptions on ω will
be used to show that our specific operators satisfy all the conditions required in
Theorem 8.

5.1. The maximal operator T ∗. We may look at T ∗ as the L∞(R+)-norm of the
vector valued operator T f = (Ttf)t>0. Then, Theorem 1 gives the boundedness of
T from Lp(ω) into LpE(ω) with E = L∞(R+). By Remark 11 we must check the
three other conditions with absolute value replaced by the L∞(R+)-norm. First,
for the size, we know from Lemma 1 item c) that

(34) ‖kt(x, y)‖E ≤ sup
t>0

e−
|x−y|2
ct

ω(B(x,
√
t))

(
1 +

√
t

ρ(x)

)−N
.
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BOUNDEDNESS OF NEGATIVE POWERS... 25

Now, for
√
t ≤ |x− y| we have by the doubling property of ω

(35) ω(B(x,
√
t)) ≥ c1

( √
t

|x− y|

)γ
ω(B(x, |x− y|))

and also

1 +

√
t

ρ(x)
≥
(

1 +
|x− y|
ρ(x)

) √
t

|x− y|
.

In the other case,
√
t ≥ |x − y|, we just use that the two above functions are

decreasing so we may replace
√
t by |x−y|. So, coming back to (34) and using that

sεe−s
2 ≤ Cε we get

(36) ‖kt(x, y)‖E ≤
C

ω(B(x, |x− y|))

(
1 +
|x− y|
ρ(x)

)−N
.

Let δ be a number such that 0 < δ < min {η, δ0} with δ0, η as given in Lemma 1.
For the smoothness we just observe that Lemma 1 gives the same estimates for

kt and ht with δ instead of η. Therefore, we obtain an estimate like (14), and
majorizing the exponential by one we arrive at

(37) sup
t>0
|kt(x, y)− kt(z, y)| ≤ C

(
|x− z|
|x− y|

)δ
1

ω(B(x, |x− y|))
,

provided |x− z| < |x− y|/4. Therefore, the smoothness condition holds having in
mind Remark 10.

Now we go for the T1-condition. Let B = B(x0, r) with r < ρ(x0) and let x, z
two points in B. Let Bρ the ball B(x0, 2ρ(x0)) and ψBρ a smooth function with
support in 2Bρ and such that ψBρ ≡ 1 on Bρ, 0 ≤ ψBρ ≤ 1. We write

sup
t>0
|Tt1(x)− Tt1(z)| ≤ sup

t>0
|(Tt − St)ψBρ(x)− (Tt − St)ψBρ(z)|

+ sup
t>0
|StψBρ(x)− StψBρ(z)|

+ sup
t>0
|Tt(1− ψBρ)(x)− Tt(1− ψBρ)(z)| = I + II + III.

(38)

For I we are going to use Lemma 1 item d) and e) together with Remark 1 as
follows.

I ≤
ˆ
2Bρ

|qt(x, y)− qt(z, y)|ω(y)dy =

(ˆ
2B

+

ˆ
2Bρ\2B

)
|qt(x, y)− qt(z, y)|ω(y)dy.

For the integral over 2B we bound the difference by the sum and apply item d). In
this way we are led to

ˆ
2B

|qt(x, y)|ω(y)dy ≤ C
( √

t

ρ(x0)

)δ0 ˆ
2B

e−
|x−y|2
ct

ω(B(x,
√
t))
ω(y)dy.

When
√
t ≤ r we may replace

√
t by r and the integral, extended to the whole

space, is bounded by a constant, independently of t. In turn, when
√
t ≥ r, we use

the reverse doubling condition and bound the exponential by one; in this way, by
the doubling property, we get
ˆ
2B

|qt(x, y)|ω(y)dy ≤ C

ω(B)

( √
t

ρ(x0)

)δ0 (
r√
t

)ν ˆ
2B

ω(y)dy ≤ C
(

r

ρ(x0)

)δ0
,
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26 E. HARBOURE, O. SALINAS, AND B. VIVIANI

since δ0 < ν and r ≤
√
t.

Now for the integral in 2Bρ \ 2B we may apply Lemma 1, item e) and Remark
1, to get the bound

C

(
r

ρ(x)

)δ ˆ
2Bρ\2B

e−
|x−y|2
ct

ω(B(x,
√
t))
ω(y)dy ≤ C

(
r

ρ(x)

)δ
.

Altogether we obtain

I ≤ C
(

r

ρ(x0)

)δ
,

since 0 < δ < δ0.
Next, to take care of II, we use the regularity result for S∗ obtained in the

previous section, more precisely, Remark 7. Since ψBρ is in BMOδ(ω) and it is also
a bounded function

II ≤ C|x− z|δ‖ψBρ‖BMOδ .

Easy calculations show that the semi-norm above is like c/ρδ(x0), obtaining for II
the same bound as for I.

It remains to look at III. In this case we may apply the smoothness inequality
obtained in (37) to get

III ≤ C|x− z|δ
ˆ
Bcρ

|x− y|−δ 1

ω(B(x, |x− y|))
ω(y)dy.

Splitting the integral in annulus of thickness 2kρ(x0), it is easy to check that the
integral behaves like ρ(x0)−δ, and we obtain the same bound also for III.

After averaging in x and z with respect to ω, we have shown that T satisfies the
T1 condition with α = 0 and ε = δ, where δ, as we said above, is any number such
that 0 < δ < δ1 = min {η, δ0}, with η and δ0 as given in Lemma 1.

Therefore, with this notation, an application of Theorem 8 in its vector valued
version (see Remark 11 ) gives the following result.

Theorem 9. Let ω be an A2-weight such that ω ∈ RDν ∩ Dγ with ν > 2 and
V ∈ RHq with q > γ/2. Then, the operator T ∗ is bounded on BMOβρ (ω) for any
0 ≤ β < δ1.

Remark 12. Notice that from the general theorem, we obtain an estimate on

BMOβE,ρ(ω) for T f . Nevertheless, as it is easy to see, ‖T ∗f‖BMOβρ
≤ ‖T f‖BMOβE,ρ

.

5.2. Fractional integral operator. We deal now with L−α/2. We proceed as in
the previous case, checking that all the requirements of Theorem 8 for the case
α > 0 are fulfilled. That the size condition holds for the kernel Kα follows from
Lemma 2, item b). Regarding the smoothness, it is enough to boundˆ ∞

0

|kt(x, y)− kt(z, y)| tα/2 dt
t

that, according to item f) of Lemma 1, is bounded by(
|x− z|
|x− y|

)δ ˆ ∞
0

(
|x− y|√

t

)δ
e−
|x−y|2
c̃t

ω(B(x,
√
t))

tα/2
dt

t
,

where, as above, δ is such that 0 < δ < δ1 and |x− z| < 1/4|x− y|.
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BOUNDEDNESS OF NEGATIVE POWERS... 27

Notice that the bound for smoothness of kt is quite similar to that of ht (see
items b) and f) in Lemma 1), so we may proceed as in the proof of Lemma 3 with
δ instead of η to obtain

(39) |Kα(x, y)−Kα(z, y)| ≤ C
(
|x− z|
|x− y|

)δ |x− y|α

ω(B(x, |x− y|))
.

provided |x − z| < 1/4|x − y|. It remains to check the T1-condition. We further
assume that α < δ1 and pick δ such that α < δ < δ1. Let B = B(x0, r) with
r < ρ(x0) and x and z two points in B. Proceeding as for T ∗ and, with the same
notation there, we write

|L−α/21(x)− L−α/21(z)| ≤ |(L−α/2 − L−α/20 )ψBρ(x)− (L−α/2 − L−α/20 )ψBρ(z)|

+ |L−α/20 ψBρ(x)− L−α/20 ψBρ(z)|

+ |L−α/2(1− ψBρ)(x)− L−α/2(1− ψBρ)(z)|
= I + II + III.

(40)

For I, let us call Dα the kernel of the operator L−α/2 −L−α/20 . Then, it is enough
to estimate ˆ

2Bρ

|Dα(x, y)−Dα(z, y)|ω(y)dy.

We divide again the integral in 2B and 2Bρ \ 2B and, as above, for the first term
we bound the difference by the sum and for the other we would like to apply some
smoothness condition. So we need estimates on the size as well as on the smoothness
of Dα. First observe

|Dα(x, y)| ≤
ˆ ∞
0

|qt(x, y)|tα/2 dt
t

≤ C

ρ(x0)δ

ˆ ∞
0

e−
|x−y|2
c̃t

ω(B(x,
√
t))
tα/2+δ/2

dt

t
,

(41)

where we use item d) of Lemma 1 and that ρ(x) ' ρ(x0). Clearly we have
ω(B(x,

√
t)) ≥ ω(B(x, |x − y|)) when

√
t ≥ |x − y|. Otherwise we use (35). In

this way we can bound the integral above by

|x− y|α+δ

ω(B(x, |x− y|))

ˆ ∞
0

e−
|x−y|2
c̃t

(
1 +
|x− y|√

t

)γ ( √
t

|x− y|

)α+δ
dt

t
,

and changing variables the integral is a finite constant independent of x and y.
Therefore, going back to (41) and integrating over 2B, we get

ˆ
2B

|Dα(x, y)|ω(y)dy ≤ C

ρ(x0)δ

ˆ
2B

|x− y|α+δ

ω(B(x, |x− y|))
ω(y)dy ≤ Crα

(
r

ρ(x0)

)δ
,

where the last inequality follows by splitting the integral domain into the annulus
2−kB \ 2−(k+1)B and using the doubling property of ω.
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28 E. HARBOURE, O. SALINAS, AND B. VIVIANI

For the integral over 2Bρ \ 2B, we use the estimate given in item e) of Lemma
1 and that ρ(x0) ' ρ(x), leading to

|Dα(x, y)−Dα(z, y)| ≤
ˆ ∞
0

|qt(x, y)− qt(z, y)|tα/2 dt
t

≤
(
|x− z|
ρ(x0)

)δ ˆ ∞
0

e−
|x−y|2
c̃t

ω(B(x,
√
t))
tα/2

dt

t

≤ C
(

r

ρ(x0)

)δ |x− y|α

ω(B(x, |x− y|))
,

(42)

where, to get the last inequality, we use the calculus of the integral made for (41)
but this time with δ = 0. Now, integrating over 2Bρ \ 2B, we obtain

ˆ
2Bρ\2B

|Dα(x, y)−Dα(z.y)|ω(y)dy ≤ C
(

r

ρ(x0)

)δ ˆ
2Bρ

|x− y|α

ω(B(x, |x− y|))
ω(y)dy

≤ C
(

r

ρ(x0)

)δ
ρ(x0)α ≤ C

(
r

ρ(x0)

)δ−α
rα.

(43)

To take care of II we use Theorem 7 for β = δ − α, that certainly satisfies
α + β < η, and with f = ψBρ . Notice that ψBρ is smooth and with compact

support so H̊αψBρ = L−α/20 ψBρ . Therefore,

II ≤ C|x− z|δ‖ψBρ‖BMOδ−α ≤ Crδρ(x0)α−δ ≤ C
(

r

ρ(x0)

)δ−α
rα.

Finally we estimate III. As above, here we are in condition to apply the smoothness
of the kernel Kα to get

III ≤ C|x− z|δ
ˆ
Bcρ

|x− y|α−δ

ω(B(x, |x− y|))
ω(y)dy ≤ Crδρ(x0)α−δ ≤ C

(
r

ρ(x0)

)δ−α
rα.

Combining all the estimates and having in mind that r < ρ(x0) we have obtained

|L−α/21(x)− L−α/21(z)| ≤ C
(

r

ρ(x0)

)δ−α
rα,

for any α < δ < δ1.
Consequently, averaging in x and z over B, we have proved that L−α/2 satisfies

the T1-condition with ε = δ − α for any α < δ < δ1. Therefore an application of
Theorem 8 gives the following result.

Theorem 10. Let ω be an A2-weight such that ω ∈ RDν ∩ Dγ with ν > 2 and

V ∈ RHq with q > γ/2. Then, the operator L−α/2 is bounded from BMOβρ (ω) into

BMOα+βρ (ω) for any β ≥ 0 and such that 0 < α+ β < δ1.

5.3. The operators L−α/2V σ/2 for α ≥ σ. Along this section we are going to
assume that V satisfies RH∞, which implies that V (y) ≤ ρ−2(y). First of all, when
α = σ, by (11), the operator is bounded on Lp(ω) for 1 < p ≤ ∞. When α ≥ σ, in
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BOUNDEDNESS OF NEGATIVE POWERS... 29

view of the inequality 9, multiplying and dividing by |x− y|σ and using the decay
we have

Kα,σ(x, y) = Kα(x, y)V σ/2(y) ≤ CN
|x− y|α−σ

ω(B(x, |x− y)|)

(
1 +
|x− y|
ρ(x)

)−N
.

So the kernel has order size α − σ. As for the smoothness we want to use that
of Kα, but we need first an improved version of (39), involving decay at infinity.
To do that we use a kind of interpolation between size and smoothness estimates.

Notice that for any pair of numbers we have |u− v| ≤ (|u|+ |v|)θ |u− v|1−θ for any
fixed 0 < θ < 1. In our case we set u = Kα(x, y) and v = Kα(z, y). We recall that
according to item b) of Lemma 2,

0 ≤ Kα(z, y) ≤ CN
|z − y|α

ω(B(z, |z − y|))

(
1 +
|z − y|
ρ(z)

)−N
,

for any positive N and our aim is to check that we may replace z by x on the
right hand side provided |x − z| ≤ 1/2|x − y|, so u and v have the same bound.
To do so observe that in such case |x − y| ' |z − y| and the doubling property
of ω gives ω(B(x, |x − y)|) ' ω(B(z, |z − y)|). Besides, from (3) and using again
|x− z| ≤ 1/2|x− y| we get

1

ρ(z)
≥ c 1

ρ(x)

(
1 +
|x− y|
ρ(x)

)− N0
N0+1

.

So multiplying by |z − y| and adding the obvious inequality 1 ≥
(

1 + |x−y|
ρ(x)

)− N0
N0+1

we arrive at (
1 +
|z − y|
ρ(z)

)−N
≤ C

(
1 +
|x− y|
ρ(x)

)−Ñ
,

with Ñ = N −NN0/(N0 + 1), as we wanted.
Therefore, inserting the estimates for |u− v| and |u|+ |v|, we obtain

|Kα(x, y)−Kα(z, y)| ≤ C
(
|x− z|
|x− y|

)δ(1−θ) |x− y|α

ω(B(x, |x− y|))

(
1 +
|x− y|
ρ(x)

)−θN
.

(44)

Since (39) was valid for any δ < δ1, choosing θ small enough and then N sufficiently
large we get

(45) |Kα(x, y)−Kα(z, y)| ≤ CN
(
|x− z|
|x− y|

)δ |x− y|α

ω(B(x, |x− y|))

(
1 +
|x− y|
ρ(x)

)−N
,

for any 0 < δ < δ1. From here we easily obtain the smoothness for Kα,σ in view of
the inequality

|Kα,σ(x, y)−Kα,σ(z, y)| ≤ |Kα(x, y)−Kα(z, y)|V σ/2(y),

and from
(46)

V σ/2(y) ≤ Cρ(y)−σ ≤ Cρ(x)−σ
(

1 +
|x− y|
ρ(x)

)N0

≤ C|x−y|−σ
(

1 +
|x− y|
ρ(x)

)N0+σ

.
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30 E. HARBOURE, O. SALINAS, AND B. VIVIANI

Therefore, from the last three inequalities, choosing N = N0 + σ, it follows for
0 < δ < δ1 that

(47) |Kα,σ(x, y)−Kα,σ(z, y)| ≤ C
(
|x− z|
|x− y|

)δ |x− y|α−σ

ω(B(x, |x− y|))
.

Finally we check the T1-condition. Let B = B(x0, r) with r < ρ(x) and x and z
two points in B. Then we have

|L−α/2V σ/21(x)− L−α/2V σ/21(z)| ≤ |L−α/2
(
V σ/2χ5B

)
(x)− L−α/2

(
V σ/2χ5B

)
(z)|

+

ˆ
(5B)c

|Kα,σ(x, y)−Kα,σ(z, y)|ω(y)dy

= I + II.

(48)

For the first term, according to Theorem 6 together with Remark 9 , L−α/2 may

be extended to a bounded operator from Mα−β
1 into BMOβ(ω) for β < min {α, δ1},

since its kernel satisfies the appropriate size and smoothness estimates. (see Lemma

2 and (39)). On the other hand, V σ/2χ5B is a function in Mα−β
1 and with compact

support. In fact, if we take Q = B(x1, s) any ball

sα−β

ω(Q)

ˆ
Q

V σ/2χ5B ω ≤ Csα−βρ(x0)−σ
ω(Q ∩ 5B)

ω(Q)
.

Assume Q ∩ 5B 6= ∅. If s ≤ 5r we bound the above quantity by crα−βρ(x0)−σ,
having in mind that ρ(y) ' ρ(x0) for y ∈ 5B. Otherwise, |x1 − x0| ≤ 2s and also

Q ⊂ B̃ = B(x0, 3s) ⊂ 5Q and being ω doubling and ν-reverse doubling we have

ω(Q) ' ω(B̃) ≥ (s/r)νω(B) ≥ C (s/r)
α−β

ω(B) ; this, together with the obvious
inequality ω(Q ∩ 5B) ≤ ω(5B), gives also the bound rα−βρ(x0)−σ when 5r ≤ s.

Altogether we conclude

‖V σ/2χ5B‖Mα−β
1
≤ Crα−βρ(x0)−σ.

Going back to the estimate for I, it follows

I ≤ Crα−βρ(x0)−σrβ = Crα−σ
(

r

ρ(x0)

)σ
.

As for the second term we may use the smoothness of the kernel since in our
situation |x−y| ≥ 4r ≥ 2|x−z|, but instead of (47) we will use a somehow stronger
variant, namely

|Kα,σ(x, y)−Kα,σ(z, y)| ≤ C

ρ(x0)σ

(
|x− z|
|x− y|

)δ |x− y|α

ω(B(x, |x− y|))
,

which holds also from (45) and from (46) just stopping before the last inequality
and using that, in our case, ρ(x) ' ρ(x0). Plugging that estimate in II we obtain

II ≤ C

ρ(x0)σ
|x− z|δ

ˆ
(5B)c

|x− y|α−δ

ω(B(x, |x− y|))
ω(y)dy.

Since the integral is bounded by Crα−δ, we get

II ≤ C

ρ(x0)σ
rα ≤ rα−σ

(
r

ρ(x0)

)σ
,
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BOUNDEDNESS OF NEGATIVE POWERS... 31

which is the same estimate that we have for the first term.
In this way we have shown that T1-condition holds with ε = σ.
Collecting estimates, we have proved that L−α/2V σ/2 is an (α− σ)-Schrödinger-

Calderón-Zygmund operator with respect to ωdx and having smoothness of order δ
for any 0 < δ < δ1. Moreover, the T1 condition holds with exponent σ. Therefore,
an application of Theorem 8 gives the following result.

Theorem 11. Let ω be an A2-weight such that ω ∈ RDν with ν > 2. Assume
that V ∈ RH∞ and let ρ be its associate critical radius function. Then, given α
and σ, with α ≥ σ > 0, the operator L−α/2V σ/2 is bounded from BMOβρ (ω) into

BMOβ+α−σρ (ω) for any 0 ≤ β ≤ σ and such that 0 < β + α− σ < δ1.
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