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AFFINITY KERNELS ON MEASURE SPACES AND MAXIMAL

OPERATORS

HUGO AIMAR, IVANA GÓMEZ, AND LUIS NOWAK

Abstract. In this note we consider maximal operators defined in terms of

families of kernels and families of their level sets. We prove a general estimate

that extends some classical Euclidean cases and, under some mild transitivity
property, we show their basic boundedness properties on Lebesgue spaces.

The motivation of these problems have their roots in the analysis associated

to affinity kernels on large data sets.

1. Introduction

The history of the relation between harmonic analysis and euclidean geometry,
goes back to the origin of potential theory in Physics and Mathematics. Newtonian
and electrostatic Coulombian potentials have the general form

KN (x, y) =
1

d(x, y)
,

with d the Euclidean distance in the space. For nuclear forces in the atom, the
Yukawa potential takes the form

KY (x, y) =
e−d(x,y)

d(x, y)
,

which is of the order ofKN (x, y) for x and y close but is much smaller thanKN (x, y)
when x and y are far away from each other.

In [AG18] it is shown that, under some mild transitivity condition on an abstract
kernel K(x, y) defined on the abstract set X, K(x, y) = ϕ(d(x, y)) for some quasi-
metric d on X and some decreasing positive profile function ϕ.

The kernels KN , KY and K above share a basic property, to wit; the sections
of their level sets are metric balls. In some problems related to affinity kernels on
data sets, the metric structure underlying is not at all apparent. Let us start from
a basic finite situation posed on an undirected graph with V = {1, . . . , n} as its set
of vertices and E the set of all edges. We shall assume that each vertex in V has
a positive probabilistic measure ai. Which at a first glance can be considered to
be equal to 1

n . Set a to denote the vector (a1, . . . , an). Let us illustrate the role
of the family of kernels on the basic graph G = (V, E , a) with a simple example.
Assume that the vertices in V are the vineyards of some fixed region or country.

2010 Mathematics Subject Classification. Primary 42B25, 54E15.
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2 AFFINITY KERNELS ON MEASURE SPACES AND MAXIMAL OPERATORS

The quality of a single-varietal wine in any of the vineyards depends of several
different features; rains, temperature, composition of the terroir, et cetera. Each
one of this features define affinities between different vineyards. Each affinity can
be considered as a symmetric nonnegative matrix providing the weight of each
edge in G. Since we are considering at once several features that are relevant to
the quality of the wine, we may think this situation as a vector-weighted graph.
Each edge {i, j} ∈ E is weighted with a vector weight that takes into account the
diversity of features, i.e. wki,j where k = 1, . . . ,m is the parameter describing the

different features. Formally, we have a sequence Gk = (V, E , a, wk) of weighted
graphs, k = 1, 2, . . . ,m with V, E and a fixed. Each wki,j is nonnegative with

wki,j = wkj,i. In other words, we have a basic set V and a basic probability a on

V with a family of nonnegative symmetric kernels given by w
k
. In the example

above it becomes important the determination of a notion of distance between
two single-varietals produced by different vineyards. Our result in Theorem 2.1
applies to our example without no a priori knowledge of the existence of a metric.
The basic shapes are the level sets of the given family of kernels. Of course the
important covering properties of metric balls (Wiener or Vitali type) are generally
not satisfied by level sets of kernels. Nevertheless, as shown in [AG18], under some
mild conditions on the affinity matrix, we have a natural metric structure on V.
On the other hand the basic boundedness properties of the main operators can
be rephrased in terms of the family of kernels, when they satisfy some transitivity
property, without any reference to the underlying metric structure. In this note we
show that, without any assumption on the metric structure of the kernel, always
the shape of the level sets provide an upper control in terms of Hardy-Littlewood
type maximal operators, for the integral operators determined by kernels. Some
classical results can be obtained as corollaries of this general result. Then we
consider the boundedness properties of the maximal operator under transitivity
of some kernel of a family of kernels sharing their level sets. We also deal briefly
with the associated Muckenhoupt weights, the corresponding BMO and Lipschitz
spaces. Connected with the above, we consider in Section 5, some conditions on
a radial kernel that can replace the indicator functions of balls in order to obtain
the standard Muckenhoupt weights in Rn or in any α-regular Ahlfors spaces and
some related analytical problems.

2. Maximal operators associated to families of kernels and the
basic inequality

Let (X,F , µ) be a σ-finite measure space. We shall consider families of inte-
gral operators defined on the nonnegative functions on X. For f measurable and
nonnegative, the operator TKf is defined as TKf(x) =

�
y∈X K(x, y)f(y)dµ(y), for

K : X ×X → R+ ∪{0} measurable. Of course with no additional conditions on K
and f , TKf could be infinite for every x. Nevertheless the operators TK are well
defined.
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AFFINITY KERNELS ON MEASURE SPACES AND MAXIMAL OPERATORS 3

Let K be a class of nonnegative measurable kernels K. Let L be the family of
all the level sets of the type L(λ,K) = {(x, y) ∈ X ×X : K(x, y) > λ} for K ∈ K
and λ > 0. For each x ∈ X, set LKλ (x) to denote the section at x of L(λ,K) ∈ L .
In other words,

LKλ (x) = {y ∈ X : (x, y) ∈ L(λ,K)} = {y ∈ X : K(x, y) > λ}

for K ∈ K and λ > 0. These sections are measurable for almost every x ∈ X. Set
Lx = {LKλ (x) : λ > 0,K ∈ K }.

Let us now introduce the two maximal operators that we shall consider. For a
given kernel family K and a given nonnegative measurable function f set

K∗f(x) = sup
K∈K

TKf(x).

Notice that K∗f could be identically equal to +∞ or even non-measurable since
we have no assumption on the cardinality of K . On the other hand, for the same
function f and the same kernel family K we have a well defined maximal operator
by the family Lx of sections of L by

MK f(x) = sup
L∈Lx

1

µ(L)

�
L

f(y)dµ(y),

which we shall consider to be equal to +∞ when for some L we have that L /∈ F
or when µ(L) = 0. Again, the measurability of MK is not guaranteed but is not
necessary for the pointwise estimate proved in our result which we proceed to state
and prove.

Theorem 2.1. Let K , K∗ and MK be as before. Then for f ≥ 0 measurable we
have

K∗f(x) ≤
(

sup
K∈K

�
K(x, y)dµ(y)

)
MK f(x),

for almost every x ∈ X.

Proof. Notice first that there is nothing to prove when MK f(x) = +∞. Hence we
need only take into account those x ∈ X for which L ∈ F for every L ∈ Lx and
µ(L) > 0 for L ∈ Lx. Since we are in a σ-finite measure spaces, from Fubini–Tonelli
theorems we have that

TKf(x) =

�
y∈X

K(x, y)f(y)dµ(y)

=

�
y∈X

f(y)

� K(x,y)

0

dλdµ(y)

=

� ∞
0

�
{y:K(x,y)>λ}

f(y)dµ(y)dλ

=

� ∞
0

µ({y : K(x, y) > λ})

 1

µ({y : K(x, y) > λ})

�

{y:K(x,y)>λ}

f(y)dµ(y)

 dλ
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4 AFFINITY KERNELS ON MEASURE SPACES AND MAXIMAL OPERATORS

≤
(� ∞

0

µ({y : K(x, y) > λ})dλ
)
MK f(x)

=

(�
y∈X

K(x, y)dµ(y)

)
MK f(x).

Hence

K∗f(x) = sup
K∈K

TKf(x) ≤
(�

y∈X
K(x, y)dµ(y)

)
MK f(x).

�

In the last section of this note, we derive from the above result some known
results in Euclidean and Ahlfors spaces.

3. Transitive affinity structures

Let (X,F , µ) be a σ-finite measure space. Let K be a given family of symmetric
measurable kernels K : X×X → R+∪{0}. We say that (X,F , µ,K ) is an affinity
structure on X. Given an affinity structure (X,F , µ,K ) on X, as in the general
setting proposed in Section 2, we have at least two maximal operators K∗ and MK .
They satisfy the basic estimate provided by Theorem 2.1. Regarding the shapes
of the level sets of kernels K ∈ K , sometimes, under somehow mild transitivity
condition on the kernels we have that each K has a Newtonian structure (See
[AG18]). That is K(x, y) ∼= ϕK(dK(x, y)) with ϕK a decreasing profile and dK a
quasi-metric on X. Here the symbol ∼= means that the quotient between the two
quantities is bounded above and below by positive constants. In the notation we
emphasize the dependence on K of the profile and the metric. Since the level sets
of K are essentially those of ϕK ◦ dK and ϕK decreasing, the level sets of K are
essentially dK-balls.

Following [AG18] we say that a symmetric and positive kernel K on X ×X is
of Newtonian type if there exist a metric d on X and a (one to one) decreasing
function ϕ : R+ −→ R+, with ϕ(0) = ∞ and ϕ(∞) = 0 such that ϕ(d(x, y)) =
K(x, y). In other words K = ϕ ◦ d. Actually this idea of extension of the classical
potential 1

|x−y| in the three dimensional Euclidean space can still be generalized

by allowing quasi-metrics instead of metrics and profiles ϕ which are not strictly
decreasing. In this section we consider a given affinity structure (X,F , µ,K ) with
some additional transitivity and doubling properties for the sections of the kernels,
and the analytical consequences related to the boundedness properties of K∗ and
MK .

Before stating the main result of this section let us state the basic metrization
lemma given and proved in [AG18].

Lemma 3.1. Let X be a set. Let V : R+ −→ P(X×X) be a one parameter family
of subsets of X ×X that satisfies

(S1) each V(r) is symmetric;
(S2) ∆ = {(x, x) : x ∈ X} ⊆ V(r), for every r > 0;
(S3) V(r1) ⊆ V(r2), for 0 < r1 ≤ r2;
(S4)

⋃
r>0 V(r) = X ×X;
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AFFINITY KERNELS ON MEASURE SPACES AND MAXIMAL OPERATORS 5

(S5)
⋂
r>0 V(r) ⊆ ∆;

(S6) there exists T > 1 such that V(r) ◦ V(r) ⊆ V(Tr), for every r > 0 where
U ◦V = {(x, z) ∈ X ×X : there exists y ∈ X such that (x, y) ∈ V, (y, z) ∈ U}
is the composition of the subsets U and V of X ×X.

Then the function δ(x, y) = inf{r > 0 : (x, y) ∈ V(r)} is a quasi-metric on X with
triangle constant less than or equal to T . Moreover, for every r > 0 we have

{(x, y) ∈ X ×X : δ(x, y) < r} ⊆ V(r) ⊆ {(x, y) ∈ X ×X : δ(x, y) < 2r}.

Theorem 3.2. Let (X,F , µ,K ) be an affinity structure on X. Assume that K
satisfies the following properties.

(i) The level sets of each K ∈ K are the same, precisely, if K,K
′ ∈ K and

λ > 0, there exists θ > 0 such that {K > λ} = {K ′ > θ};
(ii) there exists K0 ∈ K such that

(ii.a) K0(x, x) = +∞, for every x ∈ X,
(ii.b) there exists 0 < ν < 1 such that K0(x, y) > λ and K0(y, z) > λ implies

K0(x, z) > νλ,
(ii.c) there exist M > 1 and A ≥ 1 such that µ({y : K0(x, y) > λ

M }) ≤
Aµ({y : K0(x, y) > λ}).

Then, if sup
K∈K

�
K(x, y)dµ(y) is uniformly bounded we have

(1) K∗ and MK are of weak type (1, 1);
(2) MK is bounded in Lp(X,wdµ), 1 < p <∞, if and only if w belong to Ap(X,F , µ,K ),

that is

sup
K∈K

x∈X,λ>0

( 
{y:K(x,y)>λ}

w(y)dµ(y)

)( 
{y:K(x,y)>λ}

w−
1
p−1 (y)dµ(y)

)p−1
< ∞,

here, as usual,
�
E
f(x)dµ(x) = 1

µ(E)

�
E
f(x)dµ(x);

(3) if w ∈ Ap(X,F , µ,K ), then K∗ is bounded in Lp(X,wdµ), 1 < p ≤ ∞.

Proof. In the proof of the structure of K0 we shall follow the lines in [AG18] for the

simple case of the linear transitivity provided by hypothesis (ii.b). Let α = log 2
log ν ,

where ν is the constant in (ii.b). Notice that α < 0. Now for r > 0 define

V (r) = {(x, y) ∈ X ×X : K0(x, y) > r1/α}.
Let us check that this family satisfies (S1) to (S6) in Lemma 3.1. The symmetry of
each V (r) follows from the symmetry of K0. Since K0(x, x) = +∞ from (ii.a) we
see that the diagonal ∆ of X ×X is contained in each V (r). If 0 < r1 ≤ r2, then

0 < r
1/α
2 ≤ r1/α1 and {K0 > r

1/α
1 } ⊆ {K0 > r

1/α
2 } or V (r1) ⊆ V (r2). Since K0 > 0

we have that X × X =
⋃
r>0 V (r). Since K0(x, y) is finite for every x 6= y, we

also have that ∆ =
⋂
r>0 V (r). Let us now consider the composition of V (r) with

itself. That is, V (r)◦V (r) = {(x, z) ∈ X×X : there exists y ∈ X such that (x, y) ∈
V (r) and (y, z) ∈ V (r)}. Take a point (x, z) ∈ V (r)◦V (r), then for y ∈ X such that
(x, y) ∈ V (r) and (y, z) ∈ V (r) we have that K0(x, y) > r1/α and K0(y, z) > r1/α.

Hence, from (ii.b) we have also that K0(x, z) > νr1/α = νr
log ν
log 2 = (2r)

log ν
log 2 . So that
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6 AFFINITY KERNELS ON MEASURE SPACES AND MAXIMAL OPERATORS

(x, z) ∈ V (2r) and V (r) ◦ V (r) ⊆ V (2r). So we apply Lemma 3.1 to obtain that
δ(x, y) = inf{r > 0 : (x, y) ∈ V (r)} is a quasi-metric on X with triangular constant
τ ≤ 2 such that

{δ(x, y) < r} ⊆ V (r) ⊆ {δ(x, y) < 2r},

for every r > 0. The last inclusion can be written in terms of K0 as follows

{δ(x, y) < r} ⊆ {K0(x, y) > r
1
α } ⊆ {δ(x, y) < 2r}

for every r > 0. Changing the variable according to s = r1/α we have

{δ
1
α (x, y) > s} ⊆ {K0(x, y) > s} ⊆ {δ

1
α (x, y) > 2

1
α s}

for every s > 0. Set A(s) = {δ1/α(x, y) > s}, B(s) = {K0(x, y) > s} and C(s) =
{δ1/α(x, y) > 21/αs}. So A(s) ⊆ B(s) ⊆ C(s) for every s > 0. Hence, taking
K0(x, y) = s we have (x, y) 6∈ B(s) = B(K0(x, y)), so (x, y) 6∈ A(K0(x, y)) or, in
other words, δ1/α(x, y) ≤ K0(x, y). On the other hand, since (x, y) does not belong

to C( δ
1/α(x,y)
21/α

), hence (x, y) does not belong to B( δ
1/α(x,y)
21/α

) and this fact means

K0(x, y) ≤ δ1/α(x,y)
21/α

. Hence

δ
1
α (x, y) ≤ K0(x, y) ≤ 2

1
|α| δ

1
α (x, y),

as desired. In order to finish the proof of (1) we have to show the doubling property
for the δ-balls. The last estimate for K0 becomes

δβ(x, y) ≤ K0(x, y) ≤ 2|β|δβ(x, y)

for every (x, y) ∈ X ×X, with β < 0. Hence the δ-balls in X are equivalent to the
sections of the level sets of K0. Precisely, for x ∈ X and r > 0, we have from (ii.c)
that

µ(Bδ(x, 2r)) ≤ µ({y : K
1
β

0 (x, y) < 2r})

= µ({y : K0(x, y) > 2βrβ})

≤ µ
({
y : K0(x, y) >

1

Mm

(r
2

)β})
≤ Amµ

({
y : K0(x, y) >

(r
2

)β})
= Amµ({y : K0(x, y) > 2|β|rβ})
≤ Amµ(Bδ(x, r));

where m is the first positive integer such that 4β ≥M−m.
Property (2) follows from (1), (i) and the results in [AM84]. Now the bound-

edness properties of K∗ and MK follow from Theorem 2.1. �
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AFFINITY KERNELS ON MEASURE SPACES AND MAXIMAL OPERATORS 7

4. BMO and Lipschitz spaces induced by affinity kernels

In the spirit of the result of the last section regarding the operator MK for a
given affinity structure on X satisfying the hypothesis in Theorem 3.2, we may

also consider sharp maximal functions M#
K induced by the level sets of K and the

corresponding Bounded Mean Oscillation and Integral Lipschitz spaces. The main
results follow from the construction of the quasi-metric δ given in Theorem 3.2
and the results in [MS79]. See also [Aim88] for the general versions of the John–
Nirenberg Theorem.

Let us start with the basic definitions. Along the whole section we shall assume
that (X,F , µ,K ) is an affinity structure on X satisfying (i), (ii.a), (ii.b) and
(ii.c) in Theorem 3.2 with K0 as in (ii). Let f : X −→ R be a function which is
integrable on every section of every level set of every K ∈ K . Briefly, we say that
f is K -locally integrable.

A K -locally integrable function f is said to belong to BMO(K ) if there exists
a constant A such that for every K ∈ K , every x ∈ X and every λ > 0 there exists
Cx,λ,K with

1

µ({y : K(x, y) > λ})

�
{y:K(x,y)>λ}

|f(y)− Cx,λ,K |dµ(y) ≤ A.

For α > 0 we say that f belongs to Lip(K , α) if

�
{y:K(x,y)>λ}

∣∣∣∣∣f(y)−
 
{y:K(x,z)>λ}

f(z)dµ(z)

∣∣∣∣∣ dµ(y) ≤ A µ({y : K(x, y) > λ})1+α

for some constant A, every K ∈ K , every λ > 0 and every x ∈ X. Here, as before,�
E
fdµ = 1

µ(E)

�
E
fdµ. For γ > 0, we say that f belongs to Λ(K , γ) if there exists

a constant A such that

Kγ
0 (x, y)|f(x)− f(y)| ≤ A

for every x and y in X.

Theorem 4.1. Let (X,F , µ,K ) be an affinity structure on X satisfying (i) and
(ii) in Theorem 3.2. Then

(a) If f ∈ BMO(K ), then there exist positive constants c1 and c2 such that for
every K ∈ K , every λ > 0, every x ∈ X and every t > 0 we have the inequality

µ
({
y : K(x, y) > λ and

∣∣∣f(y)−
 
{K>λ}

fdµ
∣∣∣ > t

})
≤ c1e−

c2
A tµ({y : K(x, y) > λ}).

(b) If w belongs to the Muckenhoupt class Ap(X,F , µ,K ) with respect to the sec-
tions of the level sets of kernels in K for some p > 1, then

f = log(w) ∈ BMO(K ).

(c) There exists a constant β > 0 depending only on (X,F , µ,K ) such that

Lip(K , α) ⊆ Λ(K , αβ).
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8 AFFINITY KERNELS ON MEASURE SPACES AND MAXIMAL OPERATORS

Proof. With the arguments in the proof of Theorem 3.2, and with the same notation
used there, we have that all the sections of all the level sets of all the kernels in
K are δ-balls. We also have that (X, δ, µ) is a space of homogeneous type with

K0 ≡ δ−
1
β for some β > 0. Then applying the results from [MS79] and [Aim88]

to this setting we obtain the result. Notice that the results in [MS79] show that if

f ∈ Lip(K , α), then |f(x)− f(y)| ≤ Cδα(x, y) ≤ C̃K−αβ0 (x, y), as desired. �

5. Euclidean and almost Euclidean disquisitions

Let us start from the application of Theorem 2.1 to provide a direct proof of the
classical result of convolution kernels with an integrable, radial and nonincreasing
majorant. See [Ste70] for one the classical proofs.

Proposition 5.1. Let ϕ : R+ → R+ ∪ {0} non increasing with
�∞
0
ρn−1ϕ(ρ)dρ <

∞. Let K be the family of kernels in Rn given by

K =

{
Kε(x, y) =

1

εn
ϕ

(
|x− y|
ε

)
: ε > 0

}
.

Then

sup
ε>0

�
y∈Rn

1

εn
ϕ

(
|x− y|
ε

)
|f(y)| dy ≤ CMf(x),

with M the Hardy–Littlewood maximal operator on the Euclidean balls of Rn.

Proof. Since the sections of the level sets of each Kε are Euclidean balls, we have
that MK f ≤Mf . On the other hand�

y∈Rn
Kε(x, y)dµ(y) =

�
y∈Rn

1

εn
ϕ

(
|x− y|
ε

)
dy = ωn

� ∞
0

ϕ(ρ)ρn−1dρ

and we are done. �

The situation of the above proposition extends to every metric measure space
with a particular relation between the measure of balls and their radii. Then
natural settings for these extensions are the α-regular Ahlfors or normal spaces. A
metric space (X, d), or more generally a quasi-metric space (see [MS79]), is said to
be α-Ahlfors regular with respect to the Borel measure µ if there exist constants
0 < c1 ≤ c2 < ∞ such that c1r

α ≤ µ(B(x, r)) ≤ c2r
α for every x ∈ X and every

r > 0. Here B(x, r) = {x ∈ X : d(x, y) < r} is the d-ball of radius r > 0 at x ∈ X.
It is worthy noticing that the above situation contains the Euclidean one but also
all the classical self-similar fractals with α not necessarily integer and the parabolic
metrics in Rn to mention just a few.

Proposition 5.2. Let α > 0 and ϕ : R+ → R+ ∪ {0} non increasing with�∞
0
ρα−1ϕ(ρ)dρ < ∞. Let (X, d, µ) be an α-regular Ahlfors space. Let K be

the family of kernels defined in X ×X by

K =

{
Kε(x, y) =

1

εα
ϕ

(
d(x, y)

ε

)
: ε > 0

}
.
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AFFINITY KERNELS ON MEASURE SPACES AND MAXIMAL OPERATORS 9

Then

sup
ε>0

�
y∈X

1

εα
ϕ

(
d(x, y)

ε

)
|f(y)| dµ(y) ≤ CMf(x),

with M the Hardy-Littlewood maximal operator on the d-balls in X.

The proof is the same as that of Proposition 5.1 noticing that since the space is α-
regular Ahlfors and

�∞
0
ρα−1ϕ(ρ)dρ <∞ we have that sup

ε>0

�
X
Kε(x, y)dµ(y) <∞.

Let us now consider an alternative definition of Muckenhoupt classes, given in
(2) of Theorem 3.2 above, in a general affinity structure (X,F , µ,K ). The family
of Euclidean balls in Rn, can also be seen as the family of sections of the level sets
of the kernels

K =

{
1

ωnεn
X
(
|x− y|
ε

)
: ε > 0

}
,

where X is the indicator function of [0, 1) and ωn is the volume of the unit n-
dimensional ball. The standard Muckenhoupt condition, for 1 < p < ∞, can be
rewritten in terms of the family K as(�

Rn
K(x, y)w(y)dy

)(�
Rn
K(x, y)w

− 1
p−1 (y)dy

)p−1
≤ C, (5.1)

for every K ∈ K .
The above point of view suggests another way of defining a class of typeApK (X,µ).

The next result shows that condition (5.1) can be considered as a reverse Hölder
condition even in the general setting.

Proposition 5.3. Let K be a family of nonnegative, symmetric and measurable
kernels K on X×X with (X,µ) a σ-finite measure space. Assume that there exists
α > 0 such that

�
y∈X K(x, y)dµ(y) ≥ α for every x ∈ X. Then, for 1 < p < ∞,

we have

αp ≤
(�

y∈X
K(x, y)w(y)dµ(y)

)(�
y∈X

K(x, y)w
− 1
p−1 (y)dµ(y)

)p−1
for every K ∈ K .

Proof. From Hölder inequality we have, with p+ q = pq,

α ≤
�
y∈X

K(x, y)dµ(y)

=

�
y∈X

K(x, y)w
1
p (y)w

− 1
p (y)dµ(y)

=

�
y∈X

(K(x, y)w(y))
1
p

(
K(x, y)w

− 1
p−1 (y)

)p−1
p
dµ(y)

≤
(�

y∈X
K(x, y)w(y)dµ(y)

)1/p(�
y∈X

K(x, y)w
− 1
p−1 (y)dµ(y)

)p−1
p
.

�
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10 AFFINITY KERNELS ON MEASURE SPACES AND MAXIMAL OPERATORS

The next result provides some basic analysis of the relation between the classical

Ap(Rn) and ApK (Rn) when K =
{

1
εnϕ

(
|x−y|
ε

)
: ε > 0

}
with ϕ : R+ → R+ ∪ {0},

ωn
�∞
0
ϕ(ρ)ρn−1dρ = 1.

Proposition 5.4. Let ϕ : R+ → R+ ∪ {0} be a nonincreasing function with 1 =

ωn
�∞
0
ϕ(ρ)ρn−1dρ. Let K =

{
1
εnϕ

(
|x−y|
ε

)
: ε > 0

}
. For 1 < p <∞ we have

(a) ApK (Rn) ⊆ Ap(Rn);

(b) let s = sup{p, q} with pq = p+ q and ϕ ∈ L∞(R+) with
�∞
1
ϕ(ρ)sn−1dρ <∞,

then Ap(Rn) = ApK (Rn);
(c) let w ∈ Ap(Rn), then there exists δ > 0 such that with ϕ compactly supported

and
� 1

0
ϕ(ρ)δn−1dρ <∞, we have w ∈ ApK (Rn);

(d) w ∈ Ap(Rn) implies that K∗ is bounded in Lp(w). Hence w ∈ ApK (Rn) implies
the boundedness of K∗ in Lp(w).

Proof. To prove (a) take w ∈ ApK (Rn), then since ϕ is non-vanishing nonincreasing
function, there exist positive numbers a and b such that ϕ(ρ) ≥ b > 0 for every
ρ ∈ [0, a]. Hence(

1

|B(x, r)|

�
B(x,r)

w(y)dy

)(
1

|B(x, r)|

�
B(x,r)

w−
1
p−1 (y)dy

)p−1

≤
(

1

wnrn
Iw

)(
1

wnrn
I
w
−1
p−1

)p−1
where

Iv =

�
y∈Rn

1

b
ϕ

(
|x− y|a

r

)
v(y)dy

when v is a positive measurable function. Thus, with ϕε(|x − y|) = 1
εnϕ

(
|x−y|
ε

)
we have(

1

wnrn
Iw

)(
1

wnrn
I
w
−1
p−1

)p−1
≤ anp

(bwn)p

(�
y∈Rn

ϕ r
a

(|x− y|)w(y)dy

)(�
y∈Rn

ϕ r
a

(|x− y|)w
−1
p−1 (y)dy

)p−1
≤
(
an

bp
1

wpn

)p
ApK (w),

with ApK (w) the optimal constant in (5.1) for the family K = {ϕε(|x−y|) : ε > 0}.
Let us now prove (b). Take w ∈ Ap(Rn). Let Bp(w) be a constant such that

‖Mf‖Lp(w) ≤ B
1/p
p (w)‖f‖Lp(w), where M is the standard Hardy-Littlewood max-

imal operator. Then for every ball B and every measurable subset E of B we have
that

|E|
|B|
≤ Bp(w)

(
w(E)

w(B)

)1/p

, (5.2)
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AFFINITY KERNELS ON MEASURE SPACES AND MAXIMAL OPERATORS 11

with w(E) =
�
E
w (See [CF74]). The following estimates follow readily from the

properties of ϕ and from (5.2)
�
y∈Rn

ϕ

(
|x− y|
ε

)
w(y)dy

≤ ‖ϕ‖∞w(B(x, ε)) +
∑
k≥1

�
ε2k−1≤|x−y|<ε2k

ϕ

(
|x− y|
ε

)
w(y)dy

≤ ‖ϕ‖∞w(B(x, ε)) +
∑
k≥1

ϕ(2k−1)w(B(x, ε2k))

≤ ‖ϕ‖∞w(B(x, ε)) +
∑
k≥1

ϕ(2k−1)Bpp(w)2nkpw(B(x, ε))

≤
(
‖ϕ‖∞ + C

� ∞
1

ϕ(ρ)ρpn−1dρ

)
w(B(x, ε)).

On the other hand, since σ = w−
1
p−1 belong to Aq(Rn), the estimates above show

also that�
y∈Rn

ϕ

(
|x− y|
ε

)
σ(y)dy ≤

(
‖ϕ‖∞ + C

� ∞
1

ϕ(ρ)ρqn−1dρ

)
σ(B(x, ε)).

Hence (�
y∈Rn

ϕ

(
|x− y|
ε

)
w(y)dy

)(�
y∈Rn

ϕ

(
|x− y|
ε

)
w−

1
p−1 (y)dy

)p−1
≤ Cw(B(x, ε))σ(B(x, ε))p−1

≤ C̃|B(x, ε)|p.

So that w ∈ ApK (Rn).
For the case of a singularity of ϕ at the origin we have to use the so called

A∞(Rn) condition (See [CF74]). If w ∈ Ap(Rn) there exist positive constants β1
and δ1 such that the inequality

w(E)

w(B)
≤ β1

(
|E|
|B|

)δ1
holds for every ball B and for every measurable subset E of B. Since σ = w

1
p−1 ∈

Aq(Rn) there exist also β2 and δ2 such that

σ(E)

σ(B)
≤ β2

(
|E|
|B|

)δ2
for E ⊆ B.

Again, a dyadic decomposition of the integral gives�
y∈Rn

ϕ

(
|x− y|
ε

)
w(y)dy =

∑
k≥1

�
ε2−k≤|x−y|<ε2−k+1

ϕ

(
|x− y|
ε

)
w(y)dy
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12 AFFINITY KERNELS ON MEASURE SPACES AND MAXIMAL OPERATORS

≤
∑
k≥1

ϕ(2−k)w(B(x, ε2−k+1)

≤
∑
k≥1

ϕ(2−k)β12−nkδ1w(B(x, ε))

= β1

∑
k≥1

ϕ(2−k)2−nkδ1

w(B(x, ε)).

Also �
y∈Rn

ϕ

(
|x− y|
ε

)
σ(y)dy ≤ β2

∑
k≥1

ϕ(2−k)2−nkδ2

σ(B(x, ε)).

And (�
y∈Rn

ϕ

(
|x− y|
ε

)
w(y)dy

)(�
y∈Rn

ϕ

(
|x− y|
ε

)
σ(y)dy

)p−1
≤ C

(� 1

0

ϕ(ρ)ρnδ−1dρ

)p
|B(x, ε)|p

with δ = min{δ1, δ2}. In order to prove (d) notice that from Proposition 5.1 we
have that K∗ is bounded above by the Hardy–Littlewood maximal operator. If
w ∈ Ap(Rn) we have that M is bounded in Lp(w) and so is K∗. The last assertion
follows from the above and (a). �

When the conditions on ϕ contained in (b) and (c) of Proposition 5.4 are satisfied
no matter what are the values of p, q and δ, the two classes of weights coincide.

Proposition 5.5. Let ϕ : R+ → R+ ∪ {0} be a non increasing function such that� 1

0
ϕ(ρ)
ρ dρ <∞, and

�∞
1
ϕ(ρ)ρmdρ <∞ for every m ∈ N. Then

(α) Ap(Rn) = ApK (Rn) for 1 < p <∞;
and
(β) w ∈ ApK (Rn) if and only if K∗ is bounded in Lp(w).

Proof. To prove (α) take w ∈ Ap(Rn), the standard Muckenhoupt class. Then�
y∈Rn

ϕ

(
|x− y|
ε

)
w(y)dy

=

�
|x−y|<ε

ϕ

(
|x− y|
ε

)
w(y)dy +

�
|x−y|>ε

ϕ

(
|x− y|
ε

)
w(y)dy

≤
∑
k≥1

ϕ(2−k)w(B(x, ε2−k+1)) +
∑
k≥1

ϕ(2k−1)w(B(x, ε2k))

≤

β1∑
k≥1

ϕ(2−k)2−nkδ1 +Bpp(w)
∑
k≥1

ϕ(2k−1)2nkp

w(B(x, ε))

≤ C
(� 1

0

ϕ(ρ)
dρ

ρ
+

� ∞
1

ϕ(ρ)ρpn−1dρ

)
w(B(x, ε)).
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AFFINITY KERNELS ON MEASURE SPACES AND MAXIMAL OPERATORS 13

Also�
y∈Rn

ϕ

(
|x− y|
ε

)
σ(y)dy ≤ C

(� 1

0

ϕ(ρ)
dρ

ρ
+

� ∞
1

ϕ(ρ)ρpn−1dρ

)
σ(B(x, ε)).

Hence w ∈ ApK (Rn), as desired. The statement in (β) follows from (a) in Proposi-
tion 5.4, Proposition 5.1 , and (α), since Mf(x) ≤ CK∗f(x). �

A particular case of the above proposition is provided by a local behavior of
the type 1

(log 1
ρ )

1+ε , ε > 0, close to the origin and an exponential behavior of the

type e−αρ (α > 0) for ρ large. On the other hand for heavy tailed profiles ϕ the
conditions of the above results are not uniformly satisfied and the boundedness of
K∗ in Lp(w) for 1 < p <∞ does not imply that w ∈ ApK (Rn).

The above results extend naturally to Ahlfors regular metric spaces. Now the
family of kernels is given by

K =

{
1

εα
ϕ

(
d(x, y)

ε

)
: ε > 0

}
,

where d is a metric on an abstract set X, α is the dimension of (X, d).
Let us finally briefly illustrate in some simple analytical setting the problems

arising when the given family of sections level sets of kernels involve balls corre-
sponding to different metrics. Let (X,F , µ,K ) be an affinity structure on X.
Assume that the sections of the level sets of each K ∈ K are equivalent to balls in
X, with respect to some metric d that belong to some family D of metrics on X.
Hence the corresponding maximal operator on the sections of kernels of K is

MDf(x) = sup
d∈D

Mdf(x) = sup
d∈D

sup
r>0

1

µ(Bd(x, r))

�
Bd(x,r)

|f(y)|dµ(y).

Here Bd denotes any d-ball in X. This maximal operator coincides with the Hardy-
Littlewood maximal operator when D has only one element and, under a doubling
condition on µ, when all the metrics in D are equivalent with uniform equivalence
constant. However, even in classical harmonic analysis, there are some more inter-
esting examples of families of metrics producing the same topology, which are not
equivalent in the sense above.

Let us consider the following simple but illustrative situation inX = Rn. Let γ =

(γ1, ..., γn) ∈ Rn with γi ≥ 1. Define ργ on Rn by ργ(x) = sup{|xi|
1
γi : i = 1, ..., n}

and dγ(x, y) = ργ(x− y). Then ργ is a metric (parabolic distance) in Rn for every
such a γ. Notice that each dγ produces on X a structure of regular Ahlfors space.

In fact Bdγ (x, r) = {y ∈ Rn : |xi−yi| < rγi} and |Bdγ (x, r)| = 2nr
∑n
i=1 γi = 2nr|γ|,

with |γ| =
∑n
i=1 γi ≥ n. Hence, with |.| the Lebesgue measure, the space (Rn, dγ , |.|)

is a |γ|-regular Ahlfors space. Hence all the results of the previous sections hold
for families of kernels sharing the dγ balls as sections of their level sets, for every

γ with γi ≥ 1. Let us consider also a family of metrics D̂ on Rn larger than
D = {dγ : γi ≥ 1}. Let γ ∈ Rn with γi ≥ 1, i = 1, ..., n, be given. Let A be any
symmetric n×n matrix with eigenvalues γ1, γ2, ..., γn. The dilation operator defined
by the matrix A on Rn is given by TAλ x = eA log(λ)x, λ > 0. For a given x 6= 0
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14 AFFINITY KERNELS ON MEASURE SPACES AND MAXIMAL OPERATORS

in Rn the equation ‖TAλ x‖∞ = 1 has only one solution. Here ‖y‖∞ = sup
1=1,...,n

|yi|.

Clearly λ depends on x and is positive. Following the lines of Lemma 11.3.1 in
Chapter 11 of [dG81], we see that dA(x, y) = 1

λ(x−y) defines a metric on Rn and

the dA balls are orthogonal transformations of the dγ balls with γ = (γ1, ..., γn)
the eigenvalues of A. Hence MD̂ is the strong maximal function over the family of

all rectangles where D̂ = {dA : eigenvalues(A) = {γ1, ..., γn}, γi ≥ 1}. On the other
hand MD is the maximal function defined on the family of the so called intervals,
i.e. parallelepipeds with sides parallel to the coordinate axes.

The classical results regarding the “intervals” and the “rectangles” as differentia-
tion bases in Rn, see [dG81], chapters 7 and 8 give readily the following proposition.

Proposition 5.6. Let D, D̂ as before and let D̂F be a finite subfamily of D̂. Then

(a) MD̂F is of weak type (1, 1);

(b) there exists C > 0 such that

|{MDf > λ}| ≤ C

�
|f(x)|
λ

(
1 + log+ |f(x)|

λ

)
dx

for every λ > 0 and every f . But MD is not of weak type (1, 1);
(c) MD̂ is only bounded on L∞(Rn).

The estimate in (a) is due to Jessen, Marcinkiewicz and Zygmund [JMZ35]. The
result of (c) was proved by Nikodym [Nik27].
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